THIRD ANNUAL MEETING

Sarasota Florida

APRIL 22-26

1981

Association for
CHEMORECEPTION SCIENCES
The Association for Chemoreception Sciences

Third Annual Meeting Program

Wednesday Evening, April 22

7:00-10:00 PM Registration, Sarasota Hyatt House Lower Lobby

Thursday Morning, April 23

8:00-11:00 AM Registration Continues in the Lower Lobby

8:30-10:30 AM Session I, Chair: R. Bradley, Hernando-DeSoto North

C.A. Cornwall-Jones, Princeton University.
6-HYDROXYDOPAMINE REDUCES OLFATORY REACTIVITY IN RAT PUPS.

R.J. Contreras, T. Kosten and A. Berg, Yale University.
THE EFFECTS OF PRENATAL AND EARLY POSTNATAL SODIUM CHLORIDE INTAKE ON THE SALINE PREFERENCES AND BLOOD PRESSURES OF ADULT RATS.

C.A. Greer, W.B. Stewart and G.M. Shepherd, Yale University School of Medicine.
ODOR-INDUCED ACTIVITY IN THE OLFACTORY BULBS OF NEONATAL RATS.

RESPONSE LATENCIES OF RAT CHORDA TYMPANI FIBERS DURING DEVELOPMENT.

C.M. Mistretta, University of Michigan; and B.J. Baum, Baltimore City Hospital.
TASTE BUDS IN THE CIRCUMVALLATE PAPILLA OF YOUNG AND OLD RATS.

G.K. Beauchamp, Monell Chemical Senses Center and University of Pennsylvania.
POSTNATAL INGESTIVE EXPERIENCE AND SWEET TASTE PREFERENCE IN HUMAN INFANTS.

J.M. Weiffenbach and B.J. Baum, National Institute of Dental Research and National Institute on Aging, NIH.
TASTE DETECTION THRESHOLDS: CHANGES WITH POST ADOLESCENT DEVELOPMENT.

B.J. Cowart and B.J. Baum, National Institute of Dental Research and National Institute on Aging, NIH.
SUPRATHRESHOLD TASTE SENSITIVITY: CHANGES WITH POST ADOLESCENT DEVELOPMENT.

10:30-11:00 AM Coffee Break
Session II, Chair: M. Mozell, Hernando-DeSoto North

B.M. Slotnick, The American University.
AN OPERANT PROCEDURE FOR ASSESSING TASTE FUNCTION IN RATS.

C. Christensen, M. Navazesh and V. Brightman, Monell Chemical Senses Center and University of Pennsylvania.
EFFECTS OF PHARMACOLOGIC REDUCTIONS IN SALIVARY FLOW ON TASTE PERCEPTION.

B.P. Halpern and S.T. Kelling, Cornell University.
TASTE JUDGMENTS OF BRIEF STIMULI.

R.P. Erickson, Duke University.
A "NEW" DIRECTION IN TASTE PSYCHOPHYSICS: ARISTOTLE AND HENNING.

R.L. Doty, University of Pennsylvania.
DEVELOPMENT OF A SELF-ADMINISTERED MASS-SCREENING ODOR IDENTIFICATION TEST.

W.S. Cain, John B. Pierce Foundation Laboratory and Yale University.
ODOR IDENTIFICATION: FEMALES VERSUS MALES.

R.G. Davis, VA Medical Center.
THE EFFECT OF NON-OLFACTOR Y CONTEXT CUES ON ODOR IDENTIFICATION AND ON THE "TIP OF THE NOSE" STATE.

MOLECULAR STRUCTURE AND OLFACTIVE PROPERTIES.

J.M. Weiffenbach, National Institute of Dental Research, NIH.
TASTE QUALITY RECOGNITION AND FORCED CHOICE PSYCHOPHYSICS.

Thursday Afternoon, April 23

2:30- 5:30 PM
Session III, Central organizations of the Olfactory and Vomeronasal Systems, Hernando-DeSoto North

Chair: F. Macrides
Speakers: J.S. Price, B.M. Slotnick and S.S. Winans

This symposium will focus on the morphological organization of the central olfactory and vomeronasal pathways. How might morphology be related to psychophysical functions and the regulation of motivated behaviors?

Thursday Evening, April 23

7:00- 8:30 PM
Session IV, Funding Processes at the NSF and the NIH, Hernando-DeSoto North

Chair: R. O'Connell
Speakers: T. Dolan, Sensory Physiology and Perception Program, NSF; J. Pearl, NINCDS, NIH; and D. Wolff, National Institute of Dental Research, NIH

A summary of the procedures and processes at the NSF and NIH leading to support of research in the chemosensory sciences. How are proposals reviewed? What are the criteria upon which support or non-support decisions are made? What is the funding outlook for the immediate future? What other federal programs support research in the chemosensory sciences? These and other questions will be examined.

8:30- 11:00 PM
Informal mixer with cash bar, Hernando-DeSoto South
Friday Morning, April 24

8:30-10:30 AM

Session V, Chair: B. Ache, Hernando-DeSoto South

J. Van Houten and M. DiNallo, University of Vermont; M. Wholford and A. Bulloch, University of Iowa.
CHEMORECEPTION IN PARAMECIUM: RELATIONSHIP OF FOLATE TRANSPORT TO FOLATE ATTRACTION.

W.P. Aspey, Ohio State University.
CHEMICAL COMMUNICATION AND REPRODUCTIVE BEHAVIOR IN THE SEA HARE APLYSIA BRASILIANA (MOLLUSCA: OPISTOBRANCHIA).

D. Rittschof, L.G. Williams, R. Shepherd and M.R. Carriker, College of Marine Studies.
CHEMORECEPTION IN NASCENT OYSTER DRILLS: CHARACTERISTICS OF DISTANCE CHEMOATTRACTANTS.

L. Williams, D. Rittschof, B. Brown and M. Carriker, University of Delaware.
CHEMORECEPTION IN NASCENT OYSTER DRILLS: RESPONSE TO AGONISTIC STIMULI.

B. Brown, D. Rittschof, L. Williams and M. Carriker, University of Delaware.
DISCRIMINATION BETWEEN DISTANCE CHEMOATTRACTANTS IN OYSTER DRILLS.

L. Wood, Sweet Briar College; D. Rittschof, L. Walsh and L. Williams, College of Marine Studies.
CHEMORECEPTION IN NASCENT OYSTER DRILLS: INGESTIVE CONDITIONING OFFERS THE BENEFITS OF TWO FEEDING STRATEGIES.

W.H. Pearson, D.L. Woodruff, P.C. Sugarman, S.E. Miller and B.L. Olla, Battelle Marine Research Laboratory and NOAA, NMFS.
DETECTION OF PETROLEUM HYDROCARBONS BY CRABS.

J. Atema, Boston University Marine Program
THE "INFORMATION CURRENT" IN DECAPOD CRUSTACEA.

D. Devine and J. Atema, Boston University Marine Program.
DISTANCE CHEMORECEPTION AND ORIENTATION TO FOOD ODORS IN THE AMERICAN LOBSTER.

K.A. Jones, Texas A&M University.
TEMPERATURE EFFECTS ON THE ORIENTATION TO AN OLFACTORY CUE BY GOLDFISH.

10:30-11:00 AM

Coffee Break

11:00 AM - 1:00 PM

Session VI, Chair: B. Halpern, Hernando DeSoto South

L.M. Kennedy, Worcester Foundation for Experimental Biology; and B.P. Halpern, Cornell University.
ACTION OF GYMMEMIC ACIDS AND ZIZIPHINS ON CHEMORECEPTOR CELLS: DOSE-EFFECT AND TIME COURSE RELATIONSHIPS.

E. Bowdan, University of Massachusetts, Amherst.
RESPONSES OF TARSAL CHEMORECEPTORS OF THE APPLE MAGGOT TO OVIPOSITION DETERRENT PHEROMONE.
Session VI, Continued

C.D. Derby, Boston University Marine Program.
NARROW-SPECTRUM CHEMORECEPTOR CELLS IN THE WALKING LEGS OF THE
LOBSTER, HOMARUS AMERICANUS.

J.S. Kanwal and J. Caprio, Louisiana State University.
TASTE RESPONSES OF THE GLOSSOPHARYNGEAL NERVE IN THE CATFISH.

M.M. Mozell, P.R. Sheehe and S.W. Swieck, SUNY, Upstate Medical
Center; and D.G. Hornung, St. Lawrence University.
AN ELECTROPHYSIOLOGICAL PARAMETRIC STUDY OF THE STIMULATION VARIABLES
AFFECTING THE OLFATORY NERVE RESPONSE.

EOG'S ARE STIMULUS SPECIFIC DURING CILIARY GROWTH.

S.J. Kleene and R.C. Gesteland, Northwestern University.
SPECIFICITIES OF OLFACTORY RECEPTORS.

R.G. Mair and R.C. Gesteland, Northwestern University.
WITHOUT INTERNEURONS, MITRAL CELLS ECHO RECEPTOR CELLS.

J. Maruniak, W.L. Silver and D.G. Moulton, University of Pennsylvania
and VA Medical Center.
OLFACTORY RESPONSES TO BLOOD-BORNE ODORANTS.

G. Hellekant, University of Wisconsin.
BEHAVIORAL AND NEUROPHYSIOLOGICAL STUDY OF MIRACULIN IN MACACA MULATTA.

Friday Afternoon, April 24

1:00- General Business Meeting of the Association, Hernando-DeSota South
2:00 PM

Saturday Morning, April 25

8:00- Session VII, Animal Psychophysics, Sara-DeSoto North and South
10:00 AM

Chair: J. Smith
Speakers: G. Nowlis, A. Granda, J. Walker, B. Wenzel, R. Morrison

This symposium will focus on the procedures involved with evaluating
the chemosensory capabilities of different animal species.

10:00- Coffee Break
10:30 AM

10:30 AM Session VIII Chair: R. Costanzo, Sara-DeSoto North and South
12:30 PM

R. Chase, McGill University.
TROPOTACTIC ORIENTATION TO ODORS BY TERRESTRIAL SNAILS.

J.R. Mason, Monell Chemical Senses Center; and T.H. Morton, Brandeis
University.
SELECTIVE, REVERSIBLE ANOSMIA IN TIGER SALAMANDERS (AMBYSTOMA
TIGRINUM) INDUCED BY CHEMICAL TREATMENT OF THE OLFATORY EPITHELIUM.
Session VIII, Continued

C.J. Wysocki, J. Nyby, G. Whitney, S. Erisman, R. Bernhard and D. Croughamel, Monell Chemical Senses Center, University of Pennsylvania, Lehigh University, Florida State University.
THE INFLUENCE OF CHEMOSENSORY SYSTEMS AND SOCIAL EXPERIENCE UPON MALE MOUSE COURTSHIP VOCALIZATIONS.

K. Yamazaki, M. Yamaguchi and G. Beuchamp, Monell Chemical Senses Center; J. Bard and E. Boyse, Memorial Sloan-Kettering Cancer Center.
CHEMOPERCEPTION OF MAJOR HISTOCOMPATIBILITY (MHC) TYPES AMONG MICE.

R.F. Reidinger, Jr., and G.K. Beuchamp, Monell Chemical Senses Center.
CONDITIONED AVERSION TO A TASTE PERCEIVED WHILE GROOMING.

J.J. Braun, Arizona State University.
GUSTATORY NEOCORTEX: FUNCTIONAL COMMONALITIES WITH OTHER SENSORY NEOCORTICAL AREAS.

J.A. DeSimone, G.L. Heck and S.K. DeSimone, MCV/VCU.
ACTIVE ION TRANSPORT ACROSS THE CANINE LINGUAL EPITHELIUM IN VITRO.

Saturday Afternoon, April 25

12:30–2:00 PM
Givaudan Luncheon, Poolside
Menu: Minestrone; Carved to order, Ham, Roast Beef, Hot Corned Beef; French Bread; Condiments; Lettuce; Tomatoes; Potato Salad; Cole Slaw and Assorted Pastries and Cakes. Tickets $11.00 (Graduate Students $5.50) will be on sale at the AChemS registration desk.

In the event of inclement weather the luncheon and lecture will be postponed 1.5 hours to allow the Hotel to prepare an indoor site.

2:00–3:00 PM
The Third Annual Givaudan Lecture, Sara-DeSoto North and South
This year's speaker is Dr. Johanna Dwyer, Director of the Frances Stern Nutrition Center of Tufts University. Her lecture is entitled "Nutrition and Chemoreception: An Important Connection".

Saturday Evening, April 25

6:00–7:30 PM
Information Retrieval Incorporated, Reception, Hernando-DeSoto South
Information Retrieval Incorporated, publishers of Chemical Senses, Chemoreception Abstracts, Chemoreception Titles and the ECRo Symposium Series, will host a reception for the membership. During the reception a demonstration of an on-line computer search of Chemoreception Abstracts will be presented.
Saturday Evening, April 25

7:30-11:00 PM Session IX, Poster Presentations, Hernando-DeSoto North

1. B.W. Ache and R.A. Gleeson, Whitney Marine Laboratory, University of Florida. AN APPROACH TO THE FOCAL PRESENTATION OF CHEMICAL STIMULI.

3. J.G. Brand and J.L. Rabinowitz, Monell Chemical Senses Center. ANALYSIS OF POLAR AND NEUTRAL LIPIDS FROM TASTE AND NON-TASTE EPITHELIAL TISSUES FROM ADULT STEER AND CALF TONGUE.

4. A.M. Calvino, Universidad de Buenos Aires. EFFECTS OF TEMPERATURE ON GUSTATORY PERSISTENCE.

5. F.A. Catalanotto, M.E. Frank and R.J. Contreras, University of Connecticut Health Center and Yale University. COMPARING EFFECTS OF ZINC DEPRIVATION, SODIUM DEPRIVATION AND DESALIVATION ON TASTE RESPONSES OF THE CHORDA TYMPANI.

6. M.M. Chan, New York University; J.G. Brand, D.E. Ingle and M.R. Kare, Monell Chemical Senses Center. INFLUENCE OF DIETARY IRON DEFICIENCY ON TASTE PREFERENCE AND FLUID INTAKE IN GROWING RATS.

7. J.A. DeSimone, G.L. Heck, S.K. DeSimone, Medical College of Virginia; L.M. Bartoshuk and E. Bradley, Pierce Foundation. PHYSICAL AND PSYCHOPHYSICAL PROPERTIES OF SURFACE ACTIVE TASTE MODIFIERS.

8. D.L. Director and R.C. Gesteland, Northwestern University. MICROCOMPUTER ARCHITECTURE FOR CAPTURING ACTION POTENTIAL WAVEFORMS WITHOUT AVERAGING.

9. B. Eskenazi, K. Friend, W.S. Cain, E. Lipsitt, M. Rabin and R. Novelly, John B. Pierce Foundation Laboratory, West Haven VA Hospital and Yale University. Olfactory INFORMATION PROCESSING IN TEMPORAL LOBECTOMIZED PATIENTS.

10. J.F. Gent and L.M. Bartoshuk, John B. Pierce Foundation Laboratory. MAGNITUDE MATCHING OF SWEET TASTE: INDIVIDUAL DIFFERENCES.

12. M.S. Hernes, Florida State University. THE ANION'S EFFECT IN SALTY ELECTRIC TASTE.

13. P.B. Johnsen and J.L. Wellington, Monell Chemical Senses Center. CHEMICAL COMMUNICATION IN CROCODILIANS.

14. F. Ferrell, J.E. Knight, and C.L. Keen, University of California. TASTE PREFERENCE FOR HCL SOLUTION IN RATS WITH DIETARY INDUCED COPPER TOXICOSIS UNACCOMPANIED BY ZINC DEFICIENCY.
Session IX Continued

15. D.H. Krestel, Purdue University.
 CANINE BEHAVIORAL RESPONSE TO URINE.

16. D. Lancet, C.A. Greer, G.M. Shepherd, and J.S. Kauer, Yale University
 School of Medicine.
 ODOR ELICITED PATTERNS OF 2-DEOXYGLUCOSE UPTAKE IN THE SALAMANDER OLFACTORY
 PATHWAY USING HIGH RESOLUTION AUTORADIOGRAPHY.

17. A. Mackay-Sim and D.G. Moulton, University of Pennsylvania and
 V.A. Medical Center.
 ODORANT SPECIFIC PATTERNS OF DIFFERENTIAL SENSITIVITY INHERENT IN THE
 SALAMANDER OLFACTORY EPITHELIUM.

18. M.A. Marrazzi, J.F. Holliday, J.L. Luby and K.W. Fish, Wayne State
 University School of Medicine.
 A CENTRAL NERVOUS SYSTEM GLUCOSTAT INVOLVED IN INSULIN HYPOGLYCEMIC
 CONVulsIONS?

19. J.R. Mason, Monell Chemical Senses Center; and T.H. Morton, Brandeis Univ.
 SELECTIVE, REVERSIBLE ANOMIA IN TIGER SALAMANDERS (AMBystoma Tigrinum)
 INDUCED BY CHEMICAL TREATMENT OF THE OLFACTORY EPITHELIUM.

20. C. Murphy, Monell Chemical Senses Center.
 EFFECTS OF AGING ON CHEMOSENSORY PERCEPTION OF BLENDED FOODS.

 FLAVONOID STIMULANTS OF INSECT BEHAVIOR.

22. M.C. Nowycky, N. Halasz and G.M. Shepherd, Yale University School of Medicine.
 STUDIES OF DOPAMINE AS A NEUROTRANSMITTER IN THE TURTLE OLFACTORY BULB.

 OLFACTORY CROSS ADAPTATION BETWEEN AMINO ACIDS IN THE CATFISH.

 ONLY ESTERS PROTECT THE OLFACTORY MUCOSA FROM INHIBITION BY THE VAPOROUS
 ALKYLATING AGENT, ETHYL BROMOACETATE.

25. S.P. Schneider and J.W. Scott, Emory University.
 DISCRIMINATION BETWEEN MITRAL AND TUFTED CELL EXTRACELLULAR SPIKES IN THE
 RAT OLFACTORY BULB BY ANTIDROMIC ACTIVATION.

26. J.S. Schwartzbaum and G.H. Block, University of Rochester.
 UNIT ELECTROPHYSIOLOGY OF TASTE-MEDIATED BEHAVIOR IN THE PARABRACHIAL
 REGION OF THE RABBIT.

 EFFECTS OF UNILATERAL BULBECTOMY IN RATS ON OLFACTORY THRESHOLDS.

28. M.E. Frank and D.V. Smith, University of Connecticut Health Center and
 University of Wyoming.
 TYPES OF TASTE NEURONS IN THE HAMSTER CHORDA TYMPANI.

 AGE DIFFERENCES IN THE CONTRIBUTION OF OLFACTION TO FLAVOR.

 INTERNEURONS PROJECTING TO MOTONEURONS INVOLVED IN INGESTION AND REJECTION.
Sunday Morning, April 26

8:30-12:00 Noon Session X, Poster Presentations, Hernando-DeSoto North

1. B.W. Ache, University of Florida.
 Olfactory-Induced Central Neural Activity in the Spiny Lobster.

2. C.H. Block and J.S. Schwartzbaum, University of Rochester.
 Efferent Connections of the Parabrachial Area in the Rabbit.

 Taste Preferences for Sugars in the Dog.

4. P. Canclalon, Florida State University.
 Regeneration of the Catfish Olfactory Cells after Various Types of Injury.

5. C.H. Cearley, S.N. Kogge and F.E. Hanson, University of Maryland.
 Characterization of a Blowfly Chemoreceptor Using Computer Analysis.

6. J.E. Cometto-Muniz, CONICET-Fac. Medicina, UBA, Buenos Aires; and
 J.B. Pierce Foundation Laboratory.
 Odor, Taste and Flavor Perception of Some Flavoring Agents.

7. P.M. DeLorenzo, University of Rochester.
 Time Course as a Discrimination of Taste Quality in Parabrachial Units
 of the Rabbit.

 GC/MS Analysis of Marmoset Scent Marks.

9. H.W. Harper, Rockefeller University; M.E. Frank, University of Connecticut
 Health Center; R.J. Contreras, Yale University.
 Origin of the Phasic Component of Taste Responses.

 Localization and Morphology of the Sensory Structures Mediating Pheromone
 Reception in the Blue Crab.

11. K.A. Hamilton and K.A. Linberg, University of California.
 Structure of an Unusual Contact Chemosensory Seta in the Kelp Crab,
 Pugettia Producta (Randall).

 Gustatory Response of the Gerbil to Methyl α-D-Allopyranoside.

 Pituitary Control of Odor Elicited LH and Sniffing Responses in Male Mice.

14. R.B. Koch and H. Rossi, Mississippi State University.
 Odorant Responses of Na⁺-K⁺ ATPase Activity by Preparations from Paired
 Turbinals of Rat Olfactory Tissue.

15. D. Lancet, C.A. Greer and G.M. Shepherd, Yale University School of Med.
 High Resolution 2-Deoxyglucose Autoradiography in the Olfactory Bulb.
Session X Continued

16. A. Kehr and M. Levandowsky, Pace University.
ACCUMULATION AND DISPERAL OF TETRAHYMENA (CILIATA) IN RESPONSE TO
AROMATIC AND INDOLE AMINES.

17. R.W. Mankin and M.S. Mayer, USDA-SEA-Agricultural Research Laboratory.
THE QUANTIFICATION OF RELATIONSHIPS AMONG OLFATORY STIMULUS-RESPONSE
PARAMETERS.

18. T. Marui, Kagoshima University and Gifu College.
CENTRAL GUSTATORY PROJECTIONS IN THE CARP.

19. D.G. Mook and C.L. Wall, University of Virginia.
CONTROL OF SWEET SOLUTION MEALS IN THE RAT: HOW SWEET IT IS, NOT HOW
GOOD IT IS.

20. M.H. Nathan and D.C. Moulton, V.A. Medical Center and Univ. of Pennsylvania.
ODORANT RELATED 2-DEOXYGLUCOSE UPTAKE IN THE SALAMANDER OLFATORY
EPITHELIUM.

ON THE HAMSTER'S RESPONSE TO TASTE MIXTURES.

Senses Center; U. Pennsylvania; USDA.
CHANGES IN VOLATILES OF BOVINE VAGINAL FLUIDS IN RELATION TO ESTRUS.

FUNGIFORM VS. CIRCUMVALLATE PAPILIAE: IDENTIFICATION OF TASTANTS AND
PSYCHOPHYSICAL EXPONENTS.

A STRUCTURAL STUDY OF A PROPOSED CHEMORECEPTOR ON THE GILLS OF LIMULUS
POLYPHEMUS.

NO EVIDENCE FOR FUNCTIONAL DEFICITS FROM EARLY X-IRRADIATION OF RAT
OLFACTORY BULBS.

26. W.L. Silver and D.G. Moulton, VA Medical Center and University of
Pennsylvania School of Medicine.
ODOR-ELICITED RESPONSES FROM THE RAT TRIGEMINAL NERVE.

27. B.M. Slotnick, The American University.
ABSOLUTE OLFATORY THRESHOLDS IN RATS AND HUMANS.

THE EFFECTS OF VARYING BOTH US INTENSITY AND CS PREEXPOSURE LEVELS IN TASTE
AVERSIÓN CONDITIONING.

29. J. Teeter, Monell Chemical Senses Center.
EVIDENCE FOR CHEMICAL COMMUNICATION IN SEA LAMPEYS.

30. V. Vydec, University of Delaware College of Marine Studies.
FUNCTIONAL SEPARATION OF TASTE AND NON-TASTE BEHAVIORS IN OYSTER DRILLS.
The Association for Chemoreception Sciences
Executive Committee 1980-81

Executive Chairperson Linda Bartoshuk
Executive Chairperson, Past Maxwell Mozell
Executive Chairperson, Elect. Gordon Shepherd
Secretary Rose Marie Pangborn
Treasurer Thomas Getchell
Membership James Smith
Program Robert O'Connell
Councilors Joseph Brand, John DeSimone

Program Committee 1980-81

Robert O'Connell (Chairperson); B. Ache, G. Burd, J. Caprio, R. Gesteland and M. Mayer.

The Association gratefully acknowledge the generous financial support provided by its corporate members:

- The General Foods Corporation
- The Givaudan Corporation
- The Proctor & Gamble Company
- The Ralston Purina Company
- The R.J. Reynolds Tobacco Company

IN MEMORIAM

The Association notes with sadness the untimely death of Dr. David G. Moulton. Dr. Moulton was one of the pioneers in olfactory research and is responsible for many advances in our understanding of olfactory morphology, physiology and psychophysics.

ABSTRACTS OF VOLUNTEER PRESENTATIONS
OLFACTORY-INDUCED CENTRAL NEURAL ACTIVITY IN THE SPINY LOBSTER
Barry W. Ache, Whitney Marine Laboratory, Univ. of Florida.

The large decapod crustacean possesses a well-developed olfactory sense. Receptors borne on the first antennae (antennules) synapse in glomerular neuropile in the deutocerebrum of the supraesophageal ganglion (brain) with processes of olfactory interneurons. An excised, perfused anterior-end preparation of the brain permits direct microelectrode access to the olfactory neuropile and axons of the olfactory interneurons while maintaining the peripheral receptors in viable preparations. Monoaminergic fields used to characterize neural activity descending from the brain to lower motor centers that is elicited by chemical stimulation of the olfactory receptors.

Intereurons at this level of the olfactory pathways are all multimodal and exhibit at least 3 types of response to complex stimulus mixtures (e.g., crab muscle extract); (1) excitation and (2) inhibition of spontaneously active units and (3) excitation of otherwise silent units. Homournery fields of all three types of units are primarily bilateral. Response intensities vary with stimulus concentration and duration. The responses show varying degrees of liability to repetitive stimulation of the receptors. The degree of liability does not correlate with receptor type. These interneurons are considered as possible components of triggering circuits for reflexive movements elicited by anterior chemostimulation as described by Maynard and Dingle (Z. vergl. Physiol. 66: 515-540, 1963).

EGG’S ARE STIMULUS SPECIFIC DURING CILIARY GROWTH
Gloria D. Adamek, Robert G. Hair, and Robert C. Gesteland. Northwestern University, Evanston, IL 60201

Olfactory cilia transduce odors. Frog olfactory neurons bear two types of cilia. Young neurons bear short (20 - 50 μm) motile cilia. Mature cells bear longer (up to 200 μm) immotile cilia. Perfusion of the olfactory sac with 0.1M ZnSO₄ ablates the epithelium. The EOG is first recordable 12 days after treatment, which is when regenerated olfactory cilia are first seen. Through day 29, there is a linear relation between the rate of EOG recovery and the time after treatment. However, the slope of the recovery function is markedly different for different odorous chemicals. No obvious relation is evident after this time. Instead, there is an abrupt jump over a short period, bringing the EOG amplitude for each substance to within 10% of the value measured in a mature nose with no ZnSO₄ exposure. Immature cells bearing short cilia account for most of the EOG current. Treatment of the olfactory epithelium with 0.025%, Triton X-100 cleaves cilia near the apical knob. 6 hours after treatment, the EOG amplitude is reduced by more than 50%. EOG amplitude increases in a linear fashion during the following 18 hours, attaining 100% of the control value when the longest cilia measure about 35 μm. Therefore, the majority of the receptor sites contributing to EOG generation are located on the recently elaborated ciliary surface. EOG’s for different odors increase at different rates during ciliary regrowth. These rates are strongly correlated with those seen during recovery after ZnSO₄ treatment. The recovery rates are not simply related to access factors such as water or lipid solubility.

These experiments support the idea that receptors for different substances are independent and are synthesized and incorporated into the ciliary membrane at different rates.

This work was supported by NSF Grant No. BNS 78-17479 and NIH Grants No. J-801-NS14663 and No. 1-F11-NS06970.

AN APPROACH TO THE FOCAL PRESENTATION OF CHEMICAL STIMULI
Barry W. Ache and Richard A. Gleeson. Whitney Marine Laboratory, Univ. of Florida.

Direct application of chemical stimuli to the chemosensitive membrane enhances the analysis of chemoreceptor output. This is particularly true, for example, in aquatic arthropods where previous studies (Schmitt & Ache, Science 205: 204, 1979) have shown the tufted arrangement of chemosensory sensillae affects the access of stimulants to individual receptor-containing sensillae. An olfactometer is described that presents reproducible, temporally-discrete pulses of stimuli to individual chemosensory sensillae. The device is based on standard pressure injection technique; pulses of compressed air eject volumes of stimulant from 10 μm diameter glass micropipettes. Volumes dispensed are linear with time and pressure allowing for easy system calibration. Six concentrically-aligned pipettes allow focal presentation of up to six different stimuli of concentrations. A six-way, high-pressure rotary valve determines which stimulus is selected. The system is simple to construct, introduces no electrical or mechanical noise into nearby recording electrodes, and requires only minimal amounts of stimulant. This later feature should be important when using synthesized pheromones or other expensive stimulus compounds. The system should be readily adaptable to different receptor preparations.

CHLORAL COMMUNICATION AND REPRODUCTIVE BEHAVIOR IN THE SEA HARE APlysia BrasiLlania (MOLLUSCA: OPITOBANCHIA)
Wayne P. Lassen, Department of Zoology, Ohio State University, Columbus, OH 43210

Marine gastropods of the genus Aplysia are widely used as models in neurobiology due to their giant neurons. However, few studies have focused on Aplysia ethology. This paper examines chemical communication in A. BrasilIana in which a pheromone produced during egg-laying attracts conspecifics, serving to maintain breeding aggregations.

As simultaneous hermaphrodites, Aplysia have an anteriorly-placed penis and dorsal common genital aperture which allow copulation as sperm donors ("males"), recipients ("females"), or both at once. Although Aplysia can assume either or both sex roles, specific animals exhibit sex role preferences. Since male and female sex steroids are present, mass spectrophotometry of hemolymph samples revealed that "males" (copulate as male 80% of the time) had more testosterone than 17β-estradiol; "females" had more 17β-estradiol than testosterone; and "intersexes" (male = female copulatory frequency) had either equal amounts of the two steroids or no detectable quantities.

While some Aplysia lay large egg masses almost daily, others lay small ones infrequently. Sex roles and egg-laying were correlated: "females" are egg-layers (EL), "males" are non egg-layers (NEL). Oocytes of "females" are filled with eggs, while those of "males" have few. Injections of 17β-estradiol into Aplysia with no sex role preference resulted in "females", while injections into "males" resulted in "intersexes". Since testosterone injections produced no sex role change, 17β-estradiol may control sex role and egg production.

Egg-laying and aggregation are linked in that EL are rarely found alone; isolating animals results in increased egg-laying; and an EL is found at the base of most aggregations. In test aquaria, an EL elicits aggregation whereas eggs alone or NEL do not. These data suggest a pheromone released during egg-laying attracts conspecifics. Of extracts from seven different glands, only the accessory genital mass elicited aggregation.

One of the first behavioral responses exhibited by various decapod crustaceans (lobsters, crabs, crayfishes) to the presence of chemical stimuli is a burst of activity of the exopodites of the three pairs of maxillipeds. These relatively large appendages act together in a stereotyped, wave-like fashion to generate an external water current. In contrast, the gill bars or scaphognathites (exopodites of the second maxillae) are located inside the gill chamber and serve to generate the slowly (1 Hz) pulsating gill current. Whereas chemical food stimuli have little effect on gill bar activity, both food odors and social chemical stimuli activate the maxilliped exopodites. In the context of lobster courtship behavior, the male's exopodites are activated by water streaming over a freshly molted female. In agonistic encounters the exopodites are often active as well. By studies showed that the maxilliped exopodites draw water from all around the animal, concentrate it into a small area directly below them, suck it up in a vertical column, and expel it ventrally with great speed in a horizontal jet 20-30° to either side of the animal's median axis. The two sides can function independently.

The first two pairs of walking legs with their sensitive chemoreceptors and the chemoreceptive third maxillipeds themselves (endopodites) are often placed at the base of this suction column. The antennules with their olfactory aesthetasc receptor hairs can be moved downward and are thus placed in the exopodite-generated expelling current. These behavioral responses would cause the three major chemoreceptive appendages presently known in decapod crustaceans to chemical stimuli from all around the animal. The exopodite current could also serve to broadcast chemical stimuli, particularly urine products, since the decapod excretory pores are located directly above the exopodite fan on the basal segment of the antennae. Gill effluent would likely not be blown away by this current. It is proposed that the maxilliped exopodites serve as a fan to generate an "information current", both for broadcasting and receiving chemical stimuli.

While it is known that sucrose solutions are avidly consumed by newborn infants, factors influencing responses to sweetened liquids in older infants and children have not been explored. Results from a longitudinal study suggest that feeding practices of mothers moderate preferences for sweetened solutions.

Infants 1 to 4 days old (n=19) were presented solutions of sucrose (0.2 and 0.6%) and sterile water for a total of 2 min each on 2 consecutive days. Volume ingested was recorded. Subjects were tested twice at 6 months of age (n=13) and at 2 years of age (n=9). At both 6 months and 2 years of age, 7-day dietary records and a questionnaire concerning feeding habits were obtained.

From dietary records obtained at 6 months of age, it was found that many of the mothers regularly fed their infants sweetened water (tap water sweetened with sucrose, honey, or Karo syrup) as part of their normal routine. Intake of sucrose solutions by these infants was compared with intake of infants whose mothers did not report feeding them sweetened water. At birth, these two groups ingested equal amounts of sucrose solution and water. However, at six months of age, infants fed sweetened water ingested more sucrose solution but not more water than infants not being fed sweetened water. The relative preference for sucrose compared with water declined between birth and 6 months of age in the group fed sweetened water whereas it was maintained at approximately the same level as at birth in the group fed sweetened water.

At 2 years of age, virtually no child was still being fed sweetened water. Children at this age were classified into groups based on whether they had been fed sweetened water and, if so, for how many months. Those infants who had never been fed sweetened water ingested less sucrose solution but not less water than those infants who had been fed sweetened water.

These data demonstrate a correlation between mothers' feeding practices and infants' and children's responses on brief present-absent taste preference tests. The initial (at birth) similarity of the groups suggests but does not prove a causal link. It is hypothesized that at birth, sucrose solutions are not novel because taste experience is limited and there is little with which to compare the solutions. The inherent pleasantness of the sweet taste is paramount. However, for older infants not fed sweetened water during development, sucrose solutions are novel and intake is depressed. (Supported by USDA grant 902-3204-03).

Efficient Connections of the Parabrachial Area in the Rabbit. Christine H. Block and Jerome S. Schwartzbach. University of Rochester, Department of Psychology, Rochester, NY 14627.

The efferent projection systems of the parabrachial area (PBA) in the rabbit were studied utilizing the 14-15 amino acid autoradiographic technique. After gustatory regions were electrolytically defined in the PBA, 14-15-amino acid (0.2-0.3A1, 20 Cl/A1) was introduced into these taste areas by a pressure injection. Survival time varied from 1-5 days. Analysis of the data revealed that cells located in the medial aspect of the PBA project rostrally through the central tegmental tract and reticular formation with some fibers terminating in the caudal aspect of the ventromedial thalamic nucleus. Other fibers coursed ventro-laterally in the subthalamic area to the caudo-lateral aspect of the lateral hypothalamus. Injections more caudal in the PBA resulted in a similar projection pathway as well as extended rostral labelling of the dorsomedical aspect of the central nucleus of the amygdala and the substantia innominata.

In an ancillary study, gustatory units in the PBA were electrically stimulated in anesthetized rabbits. (150uA) while recording evoked responses in the substantia innominata and amygdala. Ninety units were located by this method, which had latencies ranging between 9-10 msec. However, only a small percentage of these evoked units were responsive to the four tastants (saline, acid, sucrose, quinine).

Molecular Structure and Olfactory Properties. S. Hulewicz, N.G. Haring and D. de Rijk, MAARDEN INTERNATIONAL, P.O. Box 2, 1400 CA Bussum, P.H. Dombert and T. Hendriks, Psychological Laboratory, State University Utrecht, Weenaanmarkt 2, 3511 BS Utrecht, The Netherlands.

We studied the odor qualities of over 300 aromatic chemicals, using 30 different odor aspects. The odor aspects were quantified by an expert panel on a scale from 0 to 9.

Principal component analysis (Varimax rotation) of the odor aspects as variables gave 15 factors with the most relevant combinations. Using these factors scores the odorants could be classified into 8 groups of 80 products, with a reasonable degree of overlap. Subsequently, each of these groups was submitted to factor analysis (invented data matrix) with the odorants as variables and the aspects as cases.

This afforded 14 clusters of compounds, having very similar aspect patterns within each cluster. Quantitative structure-activity relationships have been derived by correlating the ten strengths of each chemical with a cluster with the compounds' molecular structure features and physicochemical parameters, such as molecular weights and partition coefficients.
RESPONSES OF TARSAL CHEMORECEPTORS OF THE APPLE MAGGOT TO OXYGENATION DIFFERENT PHEROMONE. Elisabeth Bowen. Department of Zoology, University of Massachusetts, Amherst, Massachusetts 01003.

The apple maggot, Rhagoletis pomonella, lays a single egg in a fruit and then circles the fruit dragging her ovipositor. During this process she lays a trail of pheromone which attracts subsequent females from laying eggs (Prokopy, 1972). Ablation studies demonstrated that the pheromone exerted its effect mostly through the anterobasal tarsal (Prokopy and Spachter, 1977). Preliminary electrophysiological examination of the tarsal chemosensory hairs showed that the D hairs of the 2nd, 3rd, and 4th tarsomeres were especially sensitive to the pheromone (Cnprj, in prep.). More detailed examination of the response shows that both spike height and frequency are correlated with pheromone concentration. The response is phasic-tonic with the tonic portion being extremely slow to adapt. In fact it may not. Some sensilla were active throughout 5 minutes of stimulation. Dispersation is very rapid. The sensilla may give a response which is 50% of the response to the first stimulation (in terms of the number of spikes during the first second of stimulation) after an inter-stimulus interval of only 2 seconds.

GUSTATORY NEOCORTEX: FUNCTIONAL COMMONALITIES WITH OTHER SENSORY NEOCORTICAL AREAS. P. Jay Now, Arizona State University, Department of Psychology, Tempe, AZ 85281.

The results of several studies which characterize the nature of involvement of gustatory neocortex (GN) in associative taste processes, particularly memory, will be summarized and related to comparable studies of other sensory neocortical areas.

Ablation of gustatory neocortex in rats disrupts associative taste processes without permanently affecting detectability thresholds for taste stimuli. Preoperatively instated taste avoidance habits are lost following GN ablation, but they can be reacquired. The loss is specific to GN ablation because control lesions of other neocortical areas have no effect on the taste habits. In addition, the memory loss following GN ablation is specific to taste stimuli because learned odor habits are retained by the same operated rats that show complete memory losses of equivalent taste habits. Other experimental observations of discrimination and generalization changes in the acquisition and retention of taste habits reinforce the view that the GN has the same kind of involvement in the details of associative taste processes as other sensory neocortical areas in visual, auditory, and somatosensory neocortex. Sequential-unilateral ablation of GN does not appear to facilitate retention of preoperatively instated taste habits.

DISCRIMINATION BETWEEN DISTANCE CHEMOTACTANTS IN OYSTER DRILLS. Betty Brown, Daniel Rittschof, Leslie Williams, and Melbourne Carriker. College of Marine Studies, University of Delaware, Lewes, DE 19958.

The ability of nascent oyster drills, Orestespinus cinereus cinereus, to discriminate between distance chemotactants was tested using a circular, flow-through choice chamber, into which four stimulus portals opened via obliquely angled tunnels. Water which contained stimulus passed through a flow meter, into one of the choice chamber portals, through the central holding well and out a hole in the well base. To begin an experiment, at least 100 unfed, recently-hatched drills were placed in the well. After a defined time period, drills which had climbed into each portal were counted. When drills were presented with seawater only (same flow for each portal), rheotactic response was low, increasing slightly with increases in stimulus rate passed through each portal at different rates (0.5, 2.8, 8.4, and 14 ml/min), there was no difference in response.

Experiments contrasting response to seawater passing through two portals and to water from Balanus crenatus (BEM) holding tanks passing through the remaining two portals indicate drills can distinguish significantly between the two stimuli. There was a dramatic increase in response in 30 min runs over 10 min runs, while there was little difference in response between 30 and 60 min runs. When a dose response curve for BEM was constructed, it was noted that the dilution of BEM was notable higher in the discrimination assay than in assays not testing discrimination. At a flow of 14 ml/min, drill can discriminate between no dilution, 1:10, 1:100, 1:1000 dilutions, drills responded significantly more to full strength BEM. This difference in responsiveness to BEM at full strength was notably higher in the discrimination assay than in assays not testing discrimination. At a flow of 14 ml/min, drill can discriminate between no dilution, 1:5, 1:10 and 1:50 dilutions of BEM; but they cannot discriminate between no dilution, 1:2.5, 1:5 and 1:10 dilutions of BEM. When flow rates were altered in dose response curve experiments, responsiveness changed. These results indicate that both flow rate and stimulus concentration influence discrimination and distance chemotaxis of oyster drills.
Olfactory cross-adaptation between amino acids in the catfish.
Roland F. Byrd, Jr., and John Caprio. Department of Zoology and Physiology, Louisiana State University, Baton Rouge, LA 70803.

Electrophysiological studies have shown that a similar spectrum of amino acids is highly stimulatory to the olfactory system of a number of fish species, suggesting a commonality of amino acid receptor mechanisms. However, with the exception of this study, specific electrophysiological information concerning the olfactory transduction mechanisms for amino acids in fish is lacking.

Cross-adaptation experiments utilizing amino acids as adapting and test stimuli provided evidence for similarities and differences in transduction mechanisms for particular amino acids dependent on stimulus molecular structure. The EOG (electro-olfactogram) was used as a method to study the effects of amino acid adaptation on the olfactory system of the channel catfish, Ictalurus punctatus. The olfactory receptors, maintaining a tonic response throughout the adapting stimulus duration, adapted slowly to continuous flow of amino acids (10^-5-10^-6M). Test amino acids (10^-3-10^-4M; 0.5 ml), with concentrations adjusted to provide equal response magnitude in the unadapted state, were injected into the adapting flow. The phasic response to the test amino acids during cross-adaptation was depressed and sometimes abolished, depending on the test stimulus and concentration. Three groups of amino acid stimuli, distinguished by their respective similarity of stimulatory effectiveness under the different cross-adapting regimes, were identified. These data suggest at least three different receptor mechanisms exist which can be separated on the basis of receptor specificity: an acidic system responsive to L-α-lysine and L-α-glutamic and a neutral amino acid transduction mechanism having the highest affinity for amino acids with long, unbranched and uncharged side chains (L-α-methionine, L-α-valine, L-α-norvaline, L-α-morulin, L-α-glycine, L-α-glutamic acid—methyl ester).

(Supported in part by NIH grant NS14819 and Biomedical Research Grant S07RR07039-06)

GOO IDENTIFICATION: FEMALES VERSUS MALES. William S. Cahn, John B. Pierce Foundation Laboratory and Yale University, 290 Congress Avenue, New Haven, CT 06519.

Most males claim that females possess a superior sense of smell. Tests of absolute sensitivity have generally failed to confirm this view. Hence, either the view is wrong or the tests have failed to measure a pivotal feature. Perhaps females do not have a better sense of smell but merely know the world of odors better than males. I asked 200 persons, half males and half females, to rate how well the typical person could identify the odors of 80 everyday substances, e.g., turpentine, popcorn, grape drink, lemon, wood shavings, baby powder, beer, and bologna. The two groups agreed surprisingly well (r = 0.93). I also asked whether females or males would identify each substance better. Again, the groups agreed well (r = 0.93). Both felt that females would outperform males on about two-thirds of the substances, including virtually all foods except alcoholic beverages. The groups conceded male superiority on only those substances seen as stereotypically "male," e.g., bourbon, lighter fluid, cigar butts, cigarette butts, and machine oil. Another group of persons, approximately half males and half females, actually sought to identify the substances over the course of five sessions. Females did indeed outperform males, both initially and thereafter. Females performed better even on most stereotypically "male" substances. Tests performed on another group implied that the superiority did not arise from better qualitative discrimination. The source of the difference may lie strictly in the cultural realm. In American culture, women obtain greater functional experience with odors than do men.

The effects of temperature on the time-intensity properties of taste substances was determined.

The persistence of gustatory stimuli was measured for compounds representing each of the four qualities. Three concentrations were evaluated: for citric acid 0.1%, 0.2%, and 0.4%; for NaCl 1%, 2%, and 4%; for sucrose 5%, 10%, and 20%; for urea 2%, 4%, and 8%. The solutions were sipped at each of three different temperatures: 10°C, 37°C, and 50°C. Subjects tasted each solution and judged when the sensation disappeared, then the total persistence time was recorded.

Power functions of the form P = K T^n related the perceived persistence (P in seconds) to the concentration (C in M/V) at each temperature. The effects of temperature on persistence were different for each taste compound and both, the relative persistence and the slope of the functions showed changes.

Citric acid indicated a positive correlation between persistence and temperature, to low temperature corresponded low persistence and vice versa. In addition, when temperature raised the functions showed a lower slope. Results for NaCl showed a symmetrical opposite effect of the temperature. The persistence at high temperatures was lower than at low temperatures. The steeper functions were obtained at high temperatures. These results suggest the existence of a point where the variation of temperature does not influence the persistence of both compounds.

The results obtained with sucrose and urea were not as clear as those with citric acid and NaCl. The sweet taste of sucrose was more persistent when temperature raised, although this variation did not influence the slope value. For the bitter taste of urea maximal persistence was obtained at 50°C but there was not a clear influence of temperature on persistence.

Neural activity of the chorda tympani in response to taste solutions applied to the tongue is reduced and sodium deprivation results in desalination or removal of the sublingual and submaxillary salivary glands in rats. Although in each case there is a reduction, after sodium deprivation, responses to sucrose, NaCl and quinine are also affected; after desalination, responses to basic, neutral and high as well as low concentrations of sucrose are affected, with NaCl's effect reduced more than that of any desalination condition and its threshold elevated.

After initial (basic) responses to NaCl, a reduction in responses to all concentrations of NaCl (0.1, 0.3, 1.0 M) is observed after 10 sec of stimulation in rats given the unapplied diet but water intake was not increased when NaCl was offered. Blood hemoglobin and hematocrit and body weight were lowest in the group with 0 ppm added iron, yet neither adrenal weights nor serum zinc was affected by the dietary iron levels. In the second experiment, preferences for sodium chloride, potassium chloride and chlorides and low concentrations of calcium were observed.
TROPOTACTIC ORIENTATION TO ODORS BY TERRITORIAL SNAILS

Ronald Chase
Department of Biology, McGill University, 1105 Avenue Docteur Penfield, Montreal, Quebec, Canada H3A 1J1.

The paired posterior tentacles of pulmonate gastropods are essential sensory structures in the animals’ locomotor orientation to distant objects. In laboratory experiments with the pulmonate Achatina fulica, unidirectional tropotaxis (anemotaxis) depends on the animal having at least one intact posterior tentacle. Performance is not noticeably affected by bilateral lesions. By contrast, when the snails are tested in the absence of winds, both posterior tentacles are required for successful orientation to a food odor source. Animals with unilateral lesions consistently turn toward the intact side. These results indicate that, in still air, snails normally compare simultaneous bilateral intensities of olfactory stimulation and then turn so as to equilibrate the two sides (chemotropotaxis). This hypothesis was confirmed in experiments with a two-chambered tentant olfactometer. If one tentacle is subjected to an odorized airflow while the other tentacle is exposed to an equivalent flow of clean air, the snail turns toward the side of olfactory stimulation. This methodology is currently being applied to the determination of olfactory thresholds for orientation behavior.

The sensory impact of food and food additives arises from such attributes, as odor, taste, pungency, texture, and temperature. For many substances, odor and taste form the main components of flavor. Of these, and taste form to some extend different stimulus-response (psychophysical) functions. Odor intensity functions grow much less rapidly with concentration than do taste functions. A question of interest is whether the flavos of common flavorings behave more like taste functions or like odor functions. This investigation explored the growth of odor, taste, and flavor for five flavoring agents: vanillin, piperonal, benzaldehyde, natural vanilla extract, and artificial almond essence.

Between ten (10) and thirteen (13) subjects made duplicate or triplicate magnitude estimations of perceived odor, taste, or flavor intensities of a series of random concentrations for each compound (judgments made on one sensory modality for one substance in each session). Results for the two complex stimuli implied that changes in odor with concentration reflect primarily odor taste over the range studied. Results for the simple stimuli implied that changes in flavor follow such a universal trend: two of the three (vanillin and benzaldehyde) resembled taste functions at high concentrations but showed a tendency to flatten at lower concentrations. The third simple stimulus (piperonal) resembled a taste function throughout the range of concentration explored. A subsequent experiment was designed to explore the maximum feasible range of concentration and verified the results obtained by the simple chemicals. That is, vanillin and benzaldehyde yielded flat functions over a range of low concentrations and hence resembled odor functions in that range, but yielded steep functions at higher concentrations and hence resembled taste functions in that range. As before, piperonal resembled a taste function throughout the useable range. These findings imply that when a certain flavoring is used at a low level for its odor, small changes in its concentration are far less critical than when it is used for its taste.

*This work was supported by a fellowship from the Consejo Nacional de Investigaciones Científicas y Técnicas, República Argentina.

EFFECTS OF PHARMACOLOGIC REDUCTIONS IN SALIVARY FLOW ON TASTE PERCEPTION. Carol Christensen, Mark Navazesh & Vernon Brightman, Monell Chemical Senses Center and School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104.

Research on the role of salivary flow in human taste perception has focused on the study of individuals with relatively chronic xerostomia. Because saliva is essential for the integrity of the oral mucosa, the interpretation of the results is complicated by probable damage to gustatory receptors. Pharmacologic manipulation of salivary flow represents the best methodology for exploring the role of saliva because the salivary changes are short-lived. There are many medications which produce xerostomia (over 250 in the PDR) and so it becomes clinical feasible to ascertain whether xerostomia is a benign side effect or whether it leads to significant changes in taste perception.

To date, more than 70 healthy, college-age subjects have participated in studies in which whole mouth salivary flow was measured and taste tests were administered (recognition or detection thresholds of four threshold scale stimuli) under conditions of normal and pharmacologically reduced salivary flow. In one set of studies, subjects received single oral doses of atropine (0.75 mg, 15 mg/kg body weight), benadryl (5 mg, 30 mg/kg body weight), and a placebo (lactose capsule) in separate test sessions held at weekly intervals. At each salivary flow 45 and 150 min after administration. Benadryl reduced salivary flow 32% and 43% at 45 and 150 min after administration. Pharmacologic effects on threshold or suprathreshold judgments of "sweet" (taste substances dissolved in water) or "dry" (taste solutions dripped on filter papers) taste stimuli. In another set of studies, subjects received single oral doses of atropine (0.05 or 0.1 mg) and a placebo in separate test sessions. Salivary flow was reduced 50% for subjects receiving the lower dose and 76% for those receiving the higher dose of atropine. Recognitions thresholds and suprathreshold scaling for the four taste qualities were performed using both wet and dry taste stimuli. There was a reliable shift in recognition thresholds for wet stimuli following administration of atropine; subjects exhibited lower thresholds (were more sensitive) to aqueous taste solutions. The trend was significant for sucrose and citric acid but was not significant with quinine and NaCl (n = 9 for each taste quality). Sour thresholds for dry taste stimuli were also significantly lower when subjects received atropine. It seems likely that the observed effect is attributable to dilution; less saliva is available to dilute the taste stimuli and this function to raise the effective concentration... No changes were observed in suprathreshold scaling.

EFFECTS OF PRENATAL AND EARLY POSTNATAL SODIUM CHLORIDE INTAKE ON THE SALINE PREFERENCES AND BLOOD PRESSURES OF ADULT RATS. Robert J. Contrera, Theressa Epton & Anne T. Berg, Yale University, Dept. of Psychology, Box Mahidol Station, New Haven, CT 06519.

This investigation has been made that the prevalence of hypertension may be acquired at a young age. To date, however, there is no experimental evidence that the consumption of salt during early development is associated with a preference for salty foods later in life. We examined the effect of increasing the amount of sodium chloride provided to pregnant rat and their subsequent intake offspring. The offspring's sodium chloride intake as adults. Adult female rats consumed a diet containing either 0.12, 1 or 3 percent sodium chloride throughout pregnancy, and their offspring were continued throughout life. After 3 months of age, the rats were divided into two different groups of rats. One group received a high-sodium diet (FSF), the other a low-sodium diet (LSF). The results showed that rats consuming a high-sodium diet had significantly higher blood pressures than those consuming a low-sodium diet. We are currently testing more animals to determine whether our preference and blood pressure results can be repeated.

This research was supported by MHE, MHE Grant HL - 26732.
6-HYDROXYDOPAMINE INDUCES OLFACTORY REACTIVITY IN RAT PUPS. Catherine A. Correll, Dept. of Psychology, Princeton University, Princeton, NJ 08544

Infant rat pups injected systemically with 6-hydroxydopamine (6-OHDA) show reduced preference for conspecific odors, but normal acquisition of preferences for aversive, nonanimal odors in which they are reared from birth (Morasco, Cornwell-Jones & Sobrian, Pharmacol. Biochem. Behav., 18[4], 1981). The present experiment examined whether olfactory reactivity—i.e., the ability to change odor preferences in response to changes in the postnatal olfactory environment—was affected by systemic 6-OHDA treatment.

On the day of birth, male Sprague-Dawley rats were injected i.p. with 100 μg/g of 6-OHDA. Littermate controls were injected with vehicle only. Following injection, pups were placed in the rearing box. Postnatal day 10, pups were switched to cedar shavings, which were selected because their odor repels pine-reared pups 5-1/4 days old injected neonatally with either vehicle or 6-OHDA (Morasco et al., 1979). Odor preferences were first tested on day 15. Pups were then placed in fresh pine-scented cage on day 17. The olfactory cortex from neonatally injected adults was assayed fluorometrically for dopamine (DA) and noradrenaline (NE).

Animals were tested for 5 min in a two-choice apparatus consisting of a Plexiglas frame with a screen floor which was placed upon a two-compartment container. Fresh pine shavings were presented in one compartment. The other compartment contained cedar shavings on day 15, and garlic-scented pine shavings on day 16. Time spent over cedar or garlic shavings was monitored with a stopwatch. Following three days in cedar, control animals preferred cedar, the scent in which they had mostly recently been housed, to pine. Drug-treated pups tended to prefer pine, their first, rather than the most recent environment. Both treatments led to a reduction in preference for garlic-scented pine odor, indicating that 6-OHDA did not impair neophobic responses to odors. Adult olfactory cortex assay did not indicate a change in response to the odor treatments, but stimulation levels were significantly lower in neonatally drug-treated rats, so significant change in DA concentrations.

These findings imply that NE helps rats adapt to changes in the early olfactory environment, and that NE involvement in odor-guided behavior is not limited to modulating responses to conspecific odors.

SUPERPHRASE THRESHOLD SENSITIVITY: CHANGES WITH POST-ADOLESCENT DEVELOPMENT. Beverly J. Cowart and Bruce J. Baum, Nat. Inst. Dental Research and Nat. Inst. Aging, NIH, Bethesda, MD 20205

It is frequently suggested that taste acuity declines with age and that this may contribute to a diminished enjoyment of food, and consequent reduction of intake, by the elderly. Thresholds have been reported to increase with age. Long-term experiments have shown that taste acuity declines with age. Although slight, age-related increases in threshold are often observed, such changes do not seem to fully account for the experimental diminution of sensitivity that tends to be associated with aging. Since measures of superphrasen threshold sensitivity focus on sensory phenomena more akin to ordinary experience than the tests might be expected to provide a more sensitive index of possible age-related changes in taste perception.

Direct scaling of the perceived intensities of tastants representing each of the four basic taste qualities was performed by 51 men and 42 women ranging in age from 23 to 88 years. Stimuli were solutions of sucrose (0.055 + 0.7 M), sodium chloride (0.5% + 1.4% M), saccharin (0.01 M + 0.1 M) and quinine sulfate (1.0 x 10^-7 - 1.0 x 10^-5 M). Seven concentrations of each tastant were presented. Subjects matched the extent of a retractable tape measure to stimulus intensity. Responses to each tastant were treated separately. Prior to data analysis, subjects were divided into the following three age groups: <45, 45-64, >64. Slopes of individual intensity functions were determined, and two-factor (Age x Sex) ANOVAs were performed on slope values. Two significant effects were revealed. For quinine, there was a main effect for Age, reflecting a flattening of slope with aging. For NaCl, there was an Age x Sex interaction. This reflects the fact that while the slopes of women's intensity functions tended to be a little lower than those of men, evident a significant increase in steepness after the age of 64.

The last finding was somewhat unexpected in that steeper slopes are generally associated with greater discriminative ability and/or sensory acuity. In the present case, however, the results indicate that the ability to discriminate selective loss of sensitivity to lower level salt concentrations. That is, elderly males tended to assign a greater number of "0" ratings to low NaCl solutions than did men in either of the younger groups, while the absolute level of their mean ratings of higher concentrations fall between those given by the young and the older adult males.

ONLY ESTERS PROTECT THE OLFACTORY MUcosa FROM INHIBITION BY THE VAPOROUS ACCUMULATING AGENT, ETHYL BROMACETATE. Darrel L. Getchell and Rollin H. Safer. Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115

The vapor accumulating agent, ethyl bromoacetate (EBA), inhibits the ability of the frog nose to respond to all odors except aliphatic amines (Science, 210:425, 1980). In a previous study and continuing studies with other chemically active odors, we have attempted to produce specific inhibition using the technique reported by Getchell and Gesteland (PNAS, 69:1494, 1972). In this technique, the nasal mucosa is flooded with a solution containing a "protecting" odorant, then treated simultaneously with an inhibitory agent such as the protein-specific sulphydryl reagent, N-ethylmaleimide (NEM). The expectation is that the odorant, present in excess, will occupy most of its receptor sites and protect them from interaction with the reagent.

We found that only isomyl acetate and a few closely-related esters were capable of protecting the olfactory mucosa from the inhibitory effects of EBA applied in the vapor phase. Other odorants such as isomyl sulfide, isomyl alcohol, etc. did not protect. By contrast, isomyl acetate served as a universal protector against EBA, protecting a wide variety of odorants from many different odorant classes.

Getchell and Gesteland and other experimenters who have since replicated their work all used ethyl n-butylate or similar esters to protect. Delauney and Hoffer (Chemical Senses, 5:219, 1980) used vaporous NEM to inhibit olfactory responses and also demonstrated protection by isomyl acetate. Thus, there is ample evidence that isomyl acetate protects, both in the liquid and vapor phase. The question then arises, why is protection conferred only by esters? Perhaps protection involves some chemical action other than simply occupying a receptor site which would otherwise react with the inhibitor.

THE EFFECTS OF NON-Olfactory CONTEXT CUES ON Olfactory IDENTIFICATION AND ON THE "THANKS FOR THE NOSE" STATE. Richard G. Davis. V A Medical Center, Lexington, Kentucky 40507

Odor naming can be inferior to naming of visually or orally presented stimuli. Typically, odor research uses odors presented without the usual context cues. Odor stimuli lack the usual visual and savour system properties such as color, form, texture, temperature and the like. Even when odors with chemical-chemical context cues were used (such as a piece of banana) are used, odor naming is initially poor. The studies reported here are designed to observe the effects of visual context on odor identification. Context cues were color concepts, either relevant or irrelevant to the associated odor names. Odors were presented as a word or as a patch of color. The odors were controlled and presented with the Microfragrance products of the 3M Co. On each trial, subjects initially judged the familiarity of the odor, and then made an initial attempt to identify the odor. Next, the context cue was studied, and a second identification followed. The interpolated context cue could have been either relevant or irrelevant and either a word or a color. In a fifth type of trial, the interpolated context was presented. In one study, 165 persons identified the same 20 odors, each person received only one type of interpolated cue. The tip of the nose (TON) state was defined to exist when an individual rated it very high (upper 1/3 of the scale used), and the initial identification attempt had failed. The principle results were:

- Relevant context evoked increased responding, and more correct identifications. The word cues were more potent than the colors in evoking correct responses.
- The irrelevant context actually interfered with naming. While evoking increased responding, like the relevant cues, the correct rate decreased relative to the no cue condition; the words were more potent, while colors were marginally effective.
- If subjects were in the TON state, then the relevant cues were four times more effective than when the TON state was absent. The TON state appears to be stochastic among persons. The probability that a given person will exhibit one or more TON events is ~5.
ACTIVE ION TRANSPORT ACROSS THE CANINE LINGUAL EPITHELIUM IN VITRO
John A. De Simone, G.L. Heck, S.E. De Simone. Physiology Dept., VM/V, P.O. Box 551, Richmond, VA 23298.

The dorsal epithelium of canine tongue actively transports one or more ions. The lingual epithelium, dissected from the underlying straited muscle, can be mounted in a Plexiglas chamber in the manner of a membrane separating two compartments. When oxygenated Krebs-Henseleit buffer is placed in each chamber and the temperature raised to 37°C, a potential difference appears across the epithelium; the serosal surface becoming electropositive with respect to the mucosa. Because the electrochemical potential difference of all species is zero across the tissue, the potential necessarily arises from the transepithelial active transport of ions. The sign of the potential indicates that positive ions are being transported from mucosa to serosa, or negative ions from serosa to mucosa, or both. The potential is linked to metabolic cellular processes because: 1) it is temperature dependent being maximal at 37°C, and 2) it is dependent on tissue respiration - it diminishes by about 70% in an atmosphere of nitrogen. Restoration of O2 restores the potential. Maximum potentials of 11.2 mV and 8.5 mV have been recorded in two preparations. The latter tissue was further studied by voltage clamping the potential and recording the short-circuit current. This was Em/Acm2 in O2. Indicating an active ion flux of 250mEq/cm2 sec. I-V curves on this tissue showed that under N2, the impedance declines by 45%. 1-V curves were obtained with the mucosal solution replaced by various concentrations of NaCl. The open-circuit potential, under these conditions, is proportional to the logarithm of the mucosal NaCl concentration between 0.01 M and 0.95 M. The short circuit current is a saturable function of salt concentration. It is possible that these ion currents have a role in chemotransduction.

3 synthetic surfactants have been studied psychophysically for their taste-modifying ability in man and compared with glycine acid (GA). A natural surfactant with taste-modifying properties directed mainly toward the sweet modality. In addition, we have studied in detail the surface chemistry of GA and compared it with the synthetics, sodium lauryl sulfate (SLS). The surface tension of GA solutions resembles that of SLS and other strong surfactants in that the surface tension decreases with increasing GA concentration until a critical micelle concentration (CMC) is reached. Above the CMC, the surface tension remains constant. For GA the CMC is 0.025 gm (about 0.25 mg). The surface concentration of GA at the CMC is about 2 X 10^-4 mole/cm2 which means that a GA molecule occupies about 65A² of surface area. GA penetrates phospholipid monolayers at concentrations as low as 0.0002 gm. In this range the fall in surface tension is proportional to the GA concentration in solution, and the rate of decrease is diffusion-controlled. Data for SLS are comparable. In each case, the rate of penetration increases with increasing CMC. At a CMC, SLS surfactant concentration. Although the effects of GA on taste are well known, its surface activity suggests that SLS and other surfactants may also be taste modifiers and that surface activity may be a necessary characteristic of a class of taste modifiers. Psychophysical studies in man on SLS, a negatively charged surfactant (like GA), show that at 0.025 gm produces small but significant reductions in the sweetness of sucrose and the saltiness of NaCl. There is a larger reduction in the bitterness of quinine and a bitter component is added to the taste of citric acid. Additional studies on the cationic surfactant, octylpyridinium chloride (CPC) indicate significant reductions in the sweetness of sucrose, the saltiness of NaCl, and the bitterness of quinine at 0.005%. Finally the nonionic surfactant Tween-60 caused only a slight reduction in quinine bitterness at 1%. GA, SLS and CPC produce psychophysical response functions which are parallel displacements of the control functions in the direction of higher stimulus concentrations when plotted double logarithmically. Our results suggest that in addition to surface activity per se, the value of the CMC, the presence of charge and possibly other factors (such as steric hindrance, or van der Waals interactions) may play a role in determining differential effects on various modalities.

DISTANCE CHEMORECEPTION AND ORIENTATION TO FOOD ODORS IN THE AMERICAN LOBSTER. Dana Devine and Jelle Atema. Boston University Marine Program, Marine Biological Laboratory, Woods Hole, MA 02545.

The roles of antennal and dactyl chemoreceptors in food odor orientation were examined by ablation experiments. Lobsters were tested individually in Roper aquaria, where they occupied a shelter in the middle of the back wall. Two continuously running water flows were directed from the side walls toward the center of the tank. The lobsters' behavior was observed and timed in response to a standard food odor injected into either flow. Four treatments were performed: 1) unilaterally cutting the right lateral or 2) right medial branch of an antennal, 3) shaving the aesthetasc hairs from one lateral branch, and 4) costing the walking legs bilaterally in addition to unilateral ablation of a lateral branch. 1 Lobsters which underwent unilateral ablation of the lateral antennal flagellum lost their ability to initially detect the direction of the odor source, but they did not show preferential direction choice. 2) Unilateral medial ablation did not affect orientation ability. 3) Removal of the aesthetasc hairs from one lateral flagellum caused a loss of orientation ability similar to unilateral lateral ablation. 4) Lobsters with unilaterally ablated lateral flagella and blocked periploped chemoreceptors made a significant number of direction choices toward the side of the intact lateral flagellum.

In all treatments where a lateral flagellum was either shaved or removed, the paths followed by the lobsters in searching for the stimulus were significantly longer than those of intact animals. Thus, lobsters missing one lateral flagellum could no longer efficiently follow the changing stimulus concentrations within the odor cloud. Although intact lobsters appear to orient to odors principally by tropotaxis using aesthetasc receptor input, the periploped chemoreceptor input must also help detect odor sources of relatively high concentration. Non-aesthetasc antennal receptors seem to have no role in orientation.
TIME COURSE AS A DISCRIMINATOR OF TASTE QUALITY IN PARABRACHIAL UNITS OF THE RABBIT. Patricia M. Dilorenzo and Jerome S. Schwartzbaum. University of Rochester, Department of Psychology, Rochester, NY 14627.

Taste-related activity was studied in 42 single units in animals maintained under halothane anesthesia. Two concentrations of each of the 4 basic types of tastants were delivered to the rostral half of the tongue by means of a gravity flow system and flow chamber.

The time course of response to the different tastants was examined by transforming the data to partial out differences in magnitude of response and by applying principal components analyses (PCA) to the transformed data. Stepwise discriminant analyses complemented the PCA. Analysis of responses to the high concentration of tastants over an 8.192 sec. period derived 4 principal components or "factors". On the basis of these factors, the time course of response to the high concentration of the tastants could be differentiated at almost 2X chance level. A similar analysis on units that responded to both concentrations of tastants revealed a similar set of components that could be used to discriminate the low concentrations of the tastants. Time course was also effective in discriminating tastants within the first 2.048 sec. of the response, but the discrimination was inferior to that utilizing 8.192 sec. of the response. It would appear from the PCA of the first 2.048 sec. that palatability of the tastants may represent a major feature in the early time course discrimination of the stimuli. In effect, the initial phase of response to tastants may code primarily the palatability of the stimuli while later phases of the response fine tune quality discriminations.

MICROCOMPUTER ARCHITECTURE FOR CAPTURING ACTION POTENTIAL WAVEFORMS WITHOUT AVERAGING. Dennis L. Director and Robert C. Gesteland, Northwestern University, Evanston, IL 60201.

To study coding in the nervous system, the time between action potentials in the cell must be recorded. Extracellular microelectrode recordings, however, are often contaminated by activity of cells other than the one of interest. This unwanted activity can be identified and subsequently ignored if the waveform of each action potential is recorded with reasonable fidelity. Only digital methods accomplish this at reasonable cost. Attempts to use commonly available laboratory computers for the real time recording task are frustrated by inability to acquire data rapidly enough or by failure to store the data as rapidly as it is acquired. Even a fast machine dedicated to data acquisition may not suffice because transferring acquired data to disc can not occur while the bus is dedicated to acquisition. Specialised machines can be constructed utilizing dual-port memory as the acquisition buffer. Not only is this memory expensive, it also must be rigidly tied to the acquisition device. The solution to this problem lies in an innovative architecture. An inexpensive laboratory computer with a dual bus acquires and stores real-time data with style and elegance. We use the LSI-11 microcomputer. We adopt the Q bus for inter-system communication but split it in a processor bus and an acquisition bus. An arbiter connected to both decides when to allow information transfer between the two. The A/D converter runs at full speed, the processor runs independently of data acquisition, and the system disc drive can store the data from the acquisition buffer as. The computer configured this way remains as the general purpose machine in the laboratory and can be used for data analysis, document preparation and other standard computing tasks. This architecture improves throughput by about a decadal order of magnitude.

This work was supported by NSF Grant No. BNS 78-17479 and NIH Grant No. 5-ROI-N514663.

A variety of behaviorally important messages such as gender, individuality, species, and social rank are conveyed via scent marks from specialized sebaceous and circumanal glands, among these neo-tropical primates as Saguinus fuscicollis, Callithrix jacchus, and Leontopithecus rosalia. Previous research at the Monell Center dealt with the identification of relatively non-volatile chemicals (e.g. butyrate esters) from S. fuscicollis. Our present research uses gas chromatography/mass spectrometry to analyze the highly volatile fractions of the scent marks. Some components recently identified are: from L. rosalia-C2-C10 acids, C8-C18 hydrocarbons; from C. jacchus-C4-C14; C16-C18 saturated and unsaturated acid methyl esters, C6-C23 hydrocarbons, C6-C10 acids, C6-C10 aldehydes. Numerous qualitative and quantitative differences have been observed among the three genera. For example, S. fuscicollis scent marks contain lower concentrations of the highly volatile components than those of the other two genera, although all three contain some of the same chemicals. While L. rosalia marks contain more hexanal, heptanal, and nonanal than do marks from the other animals, C. jacchus scent marks possess the greatest abundance of the short-chain acids. Further studies, utilizing direct headspace analysis and capillary gc/ms analysis, are underway.

DEVELOPMENT OF A SELF-ADMINISTERED MASS-SCREENING ODOR IDENTIFICATION TEST. Richard L. Doty. University of Pennsylvania Clinical Smell and Taste Research Center, 5th Floor Gates Bldg., Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104.

The most common dysfunction of the olfactory system in patients referred to our Center is total or partial anosmia. In the first phase of the development of a standardized smell test battery applicable to clinical settings, we have administered a 50 item forced-choice multiple alternative smell identification test incorporating microencapsulated crystals to a number of clinical and nonclinical populations. The simplicity and ease of administration, scoring and shipping of this test allows for large numbers of individuals to be examined for gross smell function with minimal supervision, effort and equipment. Data collected relating to the incidence of total and partial anosmia in these populations will be presented, along with analyses of the detection of malingering using this test procedure.
TASTE PREFERENCE FOR HCL SOLUTION IN RATS WITH DIETARY INDUCED COPPER TOXICOSIS UNACCOMPANIED BY ZINC DEFICIENCY. Fay Ferrer, Jane E. Knight, and Carl L. Keen. Department of Nutrition, University of California, Davis, CA. 95616

Increased preference for HCl has been reported in dietary zinc deficiency and in rats made copper toxic by IP injection of CuCl₂. Mechanisms responsible for the preference changes are unknown. Cu and Zn can be antagonistic to each other with respect to intestinal absorptions. In pilot studies from our laboratory, dietary Cu induced Zn deficiency produced as a side effect elevated levels of liver Cu, but not plasma Zn. Cu deficient and control rats did not differ in HCl preference, but liver Cu and plasma Cu were positively correlated with high HCl preference in Zn deficient individuals. These preferences in Cu supplemented, Zn deficient rats indicate a possible role for Cu in taste preference changes in Zn deficient rats.

The present research examined effects upon HCl preference of normal and toxic levels of Cu in diets with adequate Zn. Fifty-two weanling rats were assigned to one of four levels of dietary Cu, with concentrations of 10 ppm (control), 50 ppm, and 100 ppm Cu in each diet was 100 ppm. Rats were fed their respective diets throughout the study. After four weeks, six consecutive preference tests were conducted using a 48-hour two-bottle free choice paradigm and employing 2.5 x 10⁻³ HCl vs. distilled water. Animals were then killed by exsanguination. Cu, Zn, and Fe concentrations in plasma and liver samples were determined by atomic absorption spectrophotometry. Liver manganese was determined. The concentration of liver Cu, Zn, and Mn was highest in liver samples from the lowest Cu ppm group. Variability in eating patterns increased with increased levels of dietary Cu, but the treatment groups did not differ in total fluid intake. No group differed from controls in HCl preference, and preference ratios decreased over the testing period in all four groups. These results suggest that high levels of dietary Cu, in contrast to IP injection, consistently elevate HCl preference. Possibly, preferences would be affected by higher levels of dietary Cu. One explanation for the difference between the two methods is that IP injection may more readily precipitate Zn deficiency.

OLFACTORY INFORMATION PROCESSING IN TEMPORAL LOBECTOMIZED PATIENTS. Brenda Eskenazi, Karen Friend, William S. Cain, Eric Lipsett, Michael Rabin, & Robert Novelly. John B. Pierce Foundation Laboratory, West Haven VA Hospital, and Yale University, New Haven, CT 06519.

Nineteen patients who had received temporal lobectomies for epilepsy were evaluated on a battery of tests of olfactory functioning and olfactory information processing. Performance was compared to that of a group of 50 normal controls matched on sex, age, and education. The battery included tests to evaluate absolute sensitivity, quality discrimination of relatively unfamiliar odors, immediate and delayed recognition memory, matching of an odor to its visual presentation or haptically presented source (stimulus objects), and odor identification using a list of names. We also employed a test to see if new face information could be retrieved even if the patient could not identify the odor (e.g., is the substance edible or inedible?).

The majority of the patients possessed normal absolute sensitivity. Nevertheless, their performance fell below that of normal controls on quality discrimination and on most aspects of olfactory information processing. The only test on which the patients performed within normal limits was that of immediate recognition memory. On delayed recognition memory, the patients with right lobectomies performed better than those with left lobectomies but still worse than controls. No other differences between left and right lobectomies emerged.

As the size of the sample of temporal lobectomy patients, normal controls, and other brain-damaged controls continues to grow, we hope to be able to relate functional impairment to location or extent of the brain lesion.

SURVIVAL AND TURNOVER OF THE OLFACTORY NEURONS AFTER REMOVAL OF THEIR TARGET. Iasami A. Fiteles and Giuseppina A. Monti Graziaedi, Florida State University, Tallahassee, Florida 32306

In a continuous series of experiments dealing with the dynamics of the olfactory sensory neurons, we are exploring their survival and turnover rate after removal of their target. Neonatal (1-10 days old) and adult (2 months old) mice have been unilaterally bulbectomized and partially hemispherectomized to avoid reconnection of the olfactory sensory axons with the spared forebrain (Graziaedi et al., 1978). Observations have been made on 30 animals after a postoperative survival time of 5-60 days. All the mice have been injected with β-thymidine, and in order to find the most suitable experimental conditions, different time schedules for the label were used.

On the operated side, the morphological observations conducted at light microscopic level have shown that the management of the olfactory bulb is more than they do not reach a target, and that their axons form a neurone in close proximity to the intracranial side of the lamina cribrosa. However, the olfactory neuropile of the olfactory epithelium is thinner, due to a reduction in the neuronal population. The neurons have a large nucleus with a lighter chromatol pattern than the neurons of the unoperated side. Feulgen staining suggesting the presence of a large population of young elements.

The autoradiographic observations demonstrate that, in animals sacrificed 1-2 hours after injection, the incorporation of β-thymidine in the basal cell population is greater in the experiment than in the unoperated side. The Feulgen was used to determine the approximate number of silver grains, labelled neurons appearing from the neuropile of the olfactory sensory neurons at a faster rate than the olfactory neurons. These preliminary observations seem to indicate that, while the survival of the olfactory neurons does not seem to be affected by the absence of the target, the maintenance of their normal turnover rate is highly altered by it.

(Supported by a grant from the National Science Foundation BNS 80-06803 to P.P.C. Graziaedi)
HAMSTER TASTE NEURONS IN THE HAMSTER CHORDA TYMPANI.

Hamster taste neurons have been placed into groups on the basis of their relative sensitivity to moderate intensities of sucrose, NaCl, HCl and quinine hydrochloride; test stimuli that represent 4 taste qualities. Neurons in each class have similar response profiles at each level of the nervous system that has been investigated but their breadth of tuning across the test stimuli differs at different levels. Yet, since response profiles vary within a class, it has been suggested that such categorization by "best" stimulus may be an arbitrary division of neurons that have a continuum of response profiles.

In order to see if support for the division of taste neurons into classes could be obtained, responses of 46 chorda tympani fibers of the hamster to 13 moderately intense stimuli (the 4 test chemicals plus fructose, Na-maccharin, NaH2PO4, MgSO4, KCl, NaH2Cit, citric acid, acetic acid and urea) were examined using multivariate statistical techniques. A factor analysis that compares across-stimulus correlations among fibers produced an orthogonal solution in which 3 factors accounted for 85% of the data variance. Each of 3 best-stimulus types of neurons (sucrose-, NaCl-, and KCl-best) comprised the major contribution to one of the 3 factors, demonstrating similarity in response profile across 13 stimuli within a class. The groups of neurons were located in clearly separate areas of the 3-factor space. A cluster analysis of the 40 response profiles, using a procedure to calculate cluster distances that compares each major contribution to one of the 3 factors, provided evidence for 3 distinct clusters of fibers. The clusters coincided with the groupings portrayed by the factor solution, as well as those given by the best-stimulus approach.

Thus, statistical support for 3 types of neurons in the hamster chorda tympani has been obtained. For a particular neuron, class membership can be identified with relative sensitivity to stimuli predicted, if a response profile across 4 test stimuli representing different taste qualities is determined.

MAGNITUDE MATCHING OF SWEET TASTE: INDIVIDUAL DIFFERENCES.
Janneke F. Gent & Linda M. Bartoshuk. John B. Pierce Foundation Laboratory, 290 Congress Ave., New Haven, CT 06519.

An application of the psychophysical technique of magnitude matching suggests that the perceived sweetness of sucrose and neohesperide dihydrochalcone (DHC) is more intense for "tasters" of 6-n-Propylthiouracil (PROP) than for "nontasters".

In the first study described, 10 tasters and 10 nontasters, classified according to their thresholds for PROP, gave magnitude estimates for the intensity of sucrose, Na saccharin, DHC, KCl, and NaCl. Stimuli for both studies were kept at 34°C and delivered to the front half of the tongue using the McBurney gravity flow system. Assuming that the intensity of NaCl is the same for tasters and nontasters, the data were normalized to the average rating for the strongest concentration of NaCl used. The results confirm a previously published difference between tasters and nontasters in the perceived sweetness of the lowest concentration of Na saccharin. There were also reliable differences between the two groups in the mid-range concentrations for the sweetness of DHC and sucrose, and for the bitterness of KCl.

If, in fact, tasters perceive NaCl as saltier than do nontasters, then using NaCl as the normalization stimulus would tend to distort, actually minimize, any differences between the two groups. In the second study, 10 tasters and 10 nontasters made magnitude estimates of the taste intensity of sucrose, DHC, NaCl, and the loudness of 10 tones. Taking advantage of an assumed similarity between groups in the perception of auditory intensity, subjects were told to rate the loudness of the tones on the same intensity scale used to rate the taste stimuli. The data from the second study were then normalized with respect to the average loudness of the tones. For this particular group of subjects, the average sweetness of sucrose was two times greater for tasters than for nontasters. DHC was three times sweeter for tasters than for nontasters. The differences for the saltiness of NaCl were not statistically significant.

The method for matching the magnitudes of stimuli for two different sensory modalities seems to be a promising approach to the investigation of suspected differences in taste sensitivity between tasters and nontasters of PROP.
TASTE JUDGEMENTS OF BRIEF STIMULI. Bruce P. Halpern and Steven T. Selig. Department of Physiology and Division of Biological Sciences, Section of Neurobiology and Behavior, Uris Hall, Cornell University, Ithaca, NY 14853

Reaction times to, and judgements of, brief taste stimuli were obtained from trained observers. Aqueous liquids flowed at 10 ml/sec through a 4 mm i.d. Teflon stimulus delivery tube. A 1.5 cm by 1.0 cm opening in the wall of the tube (viz. Bujas, 1935) was positioned near the tip of the tongue. A Teflon 4-way valve (Lecht and Halpern, 1979) controlled by a m. developed patterned delivery of control liquid stimuli through a line in the stimulus delivery tube. They were preceded by a 1 sec flow and followed by a 5 sec flow of control liquid. Reaction times (time from 10% to 90% of final concentration) for control liquid and stimulus pulse was measured with pairs of flow-through conductivity electrodes (Halpern and Heiselman, 1985) located just before, and after, the 1.18 cm opening in the stimulus delivery tubing to the taste receptors. Reaction times for both m. were compared with non-differential signals with pairs of electrodes with the post-taste electrodes. Pre-tongue times for 10 msec and 44 msec, respectively. Liquid pulse durations, and control or stimulus pulse trials, were randomized in all testing sessions, except that each testing session began with identically timed control, and then stimulus, pulse trials. Three practice sessions preceded regular sessions. Reaction times were measured to the nearest msec. Stimulus detail was not evident, or the conductivity electrodes received no voltage during data trials.

For 500 nM NaCl, median reaction times for 100 msec, 200 msec, 300 msec, and 1000 msec were 370 ± 23, 385 ± 31, 430 ± 51, and 474 ± 51 msec (± standard error of median). Judged taste of the pulses varied with pulse duration. The 1000 msec 500 nM NaCl pulses were usually described as salty; the 100 msec pulses, sweet or sour. Rate of saltiness increased at the longer durations.

We conclude that 100 msec is not the limiting taste stimulus duration in humans if concentration is sufficient. The qualitative characteristics of brief pulses differ from those of longer pulses. This is because the receptor for taste is a delay characteristic of the stimulus. The receptor for taste is influenced by the rate of addition or removal of the stimulus. A "taste" that the phasic neural responses presumably elicited by the brief pulses provide only partial shape information. The stimulus responses to longer stimuli, or that a brief taste pulse gives sensory input similar to that of a lower concentration but longer duration stimulus.

Supported by NSF Grant BBS-8016418 to B.P.H.

Single-fiber responses to different concentrations of a stimulus can yield clues to the origin of the phasic component of responses. If the origin is early in the path which the stimulus activates, there is a potential rate (e.g., if the phasic response is part of the receptor potential), then in all subsequent steps (e.g., action potential frequencies of single fibers) the phasic component should be in fixed ratio to the tonic component for each stimulus concentration. If the origin is late (e.g., the coupling of receptor potential to action potential rate), the phasic-tonic ratio should be the same for all fibers responding at equal rates, regardless of stimulus concentration. Since different fibers vary widely in their responses to a given stimulus concentration, such an analysis is impractical.

Data from 23 rat chorda tympani fibers with NaCl stimuli of .01, .1, .3, and 3 M concentrations were analyzed. The data are rank ordered by response level, which gives an exponential form appropriate for least-squares analysis. This is required by the high variability encountered in single-fiber responses.

For all concentrations except 3 M, and for a tonic response range exceeding 6-to-1, the phasic-tonic ratio depends on response magnitude rather than stimulus magnitude, indicating a late origin for the phasic component. With 3 M NaCl the ratio decreases at all response levels suggesting either non-specific phasic contribution at an early step, or more likely a saturation effect.

The phasic increase in response (e.g., phasic response minus tonic response) is a very stable feature. While stimulus concentration varies by 100-fold and tonic response level varies by 100-fold, the phasic increase varies little more than 2-to-1. In the context of taste quality coding, such behavior seems more easily interpretable than with across-fiber-pattern theories.

STRUCTURE OF AN UNUSUAL CONTACT CHROMOSOMAL SETA IN THE KELP CRAB, PUCITTA PRODUCTA (RANDALL). K. A. Hasler® and K. A. Limberg. Department of Biological Sciences and Marine Science Institute, University of California, Santa Barbara, CA 93106.

The terminal segment or dactyl of the walking legs of decapod crustaceans typically contains a series of rodlike sensory setae. Dactyls of the kelp crab, however, contain fine rodlike setae. Instead, flat interlocking plate-like setae cover most of the surface of the dactyl, much of the entire body as well. Electrophysiological recordings from isolated dactyl preparations indicate that both rods and plates are chemosensory in P. producta. Because superficially plates do not resemble rod setae, the morphology of plates was examined using light and electron microscopy to determine if plates might resemble other types of arthropod chemosensory sensilla.

External and internal morphological characteristics of plate setae which suggest chemosensory function include: (1) the centrally placed, large papillary covering of the rough apical cuticle to die; (2) presence of pore tubules at the tip; (3) relatively large number (up to 12) of innervating neurons (each of which contains a single axon with 9-10 configuration of paired microtubules); lack of a well-developed scopula characteristic of crustacean mechanoreceptors.

Other than the presence of pore tubules, the external structure of plates resembles that of rodlike contact chemoreceptors. Although pore tubules generally characterize insect and most arthropod chemosensory receptors, olfactory receptors, olfactory (antennal) setae of crustaceans do not contain pores. Further, the distribution of plates in P. producta makes it unlikely that plates function as distance chemoreceptors. Pore canals, which are pore tubules or pores, are thought to be secretory in crustaceans. Secretions arising from pore tubules may aid the contact chemosensory function of plate setae.

*Present address: Whitney Marine Laboratory, University of Florida, R. 1, Box 121, St. Augustine, FL 32084.
BEHAVIORAL AND NEUROPHYSIOLOGICAL STUDY OF MIRACLIN IN MACACA MULATTA. Coran Mellekant, Department of Veterinary Science, 1655 Linden Drive, Madison, WI 53706.

In man micrulin from the berries of Synapsulum dulcicium changes the taste of sour substances to a sweet and sour taste. Administration of micrulin in a slice of banana to 18 rhesus monkeys, Macaca mulatta, changed their dislike of citric acid, ascorbic acid, aspartic acid, hydrochloric acid and sodium phosphate, pH 6.2, to a temporary liking.

Recordings of the overall activity in the chorda tympani proper nerves of the same monkeys demonstrated an enhanced response to these acids after application of 0.3 to 5 mg micrulin on their tongues. The enhancement diminished with time and was related to the amount of micrulin. A slight diminution of the nerve response to sweeteners was also recorded after micrulin.

Recordings of 29 single fibres were made before and after application of 1 or 5 mg micrulin on the tongue. These fibres were selected because they responded to acids, sweeteners or both. The nerve activity of 6 of these fibres was affected by micrulin.

The recordings obtained in these 6 fibres showed four characteristics: 1. The response to acids was enhanced by micrulin. 2. The response to sweeteners was depressed by micrulin. 3. The impulse activity immediately after micrulin during rinsing with water was enhanced. 4. NaCl gave no response before micrulin. After micrulin NaCl elicited a brief burst of impulses and then depressed the activity.

Recordings of the other 21 nerve fibres suggest that micrulin does not affect the response to acids of all fibers responding to acid but that a fiber must possess some properties which make it susceptible to the effect of micrulin. One of these properties seemed to be a greater sensitivity to acid tastants of micrulin.

As a part of the study on the development of taste function in man, we have analyzed latency in 19 fibers in rats aged 14-20 days, 16 fibers in rats aged 24-35 days, and 20 fibers in adults during stimulation of the tongue with 0.1M and 0.5M HCl, NaCl, LiCl and KCl and 0.1M citric acid. Response latency, defined as the time interval between the stimulus artifact and the first neural impulse, was measured from displays of neural activity on a storage oscilloscope. Fibers in rats aged 14-20 and 24-35 days had significantly longer response latencies to salts than fibers in adults. Median response latencies to 0.1M NaCl in rats aged 14-20 days, 24-35 days and in adults were 69, 98 and 58 msec respectively. Citric acid response latencies were also decreased during development, although the change was not statistically significant. Further, we found that within each age group, response latencies for citric acid were longer than those for salts and that latency decreased as salt concentration increased.

These results demonstrate that significant developmental changes occur in taste response latencies. Factors that may be responsible for these developmental changes in the access of stimulus to the receptor, receptor events, synaptic efficiency, and/or conduction velocity.

Response latencies are rarely reported in studies of the taste system. This may be due to the difficulty in determining exactly when a stimulus which is applied via a flow chamber contacts the tongue. Latencies can be measured easily, however, if solutions are applied from a syringe because an electrical artifact is produced when the stimulus first contacts the tongue.

THE ANION'S EFFECT IN SALTY ELECTRIC TASTE. M. Scott Hennes, Dept. Biology, Florida State University, Tallahassee, FL 32304.

There are several theories concerning the mechanism of electric taste. Evidence is presented in support of the theory that electric taste produces neural responses in a manner similar to chemical stimulation by iontophoresis of ions to the taste. It is held that whatever is applied through a substractive threshold condition, a separation of charges results with an accumulation of cations at the tongue surface. Positive ions stimulate the taste cells in a chemical fashion. The total current applied may be divided into two parts, the current carried by the cation and the current carried by the anion. The percentage of current carried by either ion is variable (i.e. the transference of that ion) is dependent upon the electric mobility of that ion. Thus, for a series of sodium salts, those salts with an anion of higher mobility will iontophoresis to sodium to the tongue surface than a salt with an anion of lower mobility since the anion would be carrying a greater percentage of the total current. Salts of the former category would be expected to produce smaller responses than salts of the latter. Such responses were qualitatively observed from whole nerve responses recorded electrophysiologically from rat chorda tympani. For a variety of sodium salts (0.001 M) applied to the tongue through a flow chamber, different response latencies were obtained at equal current densities (10-50 μA/cm²). Those salts with a lower sodium transference produced smaller responses than those with a lower sodium transference.

GUSTATORY RESPONSES OF THE GERBILL TO METHYL α-D-Glucopyranoside. William Jakinovitch, Jr. CUNY, Lehman College, Department of Biological Sciences, Bronx, New York 10468.

The purpose of this work was to determine the importance of the orientation of the hydroxyl group at position C-3 of methyl α-D-glucopyranoside to taste stimulation.

Such a determination is important because in insects maximal taste stimulation by methyl glycosides requires an axial methoxyl group at position C-1 and equatorial hydroxyl groups at positions C-2, C-3 and C-4. In mammals maximal taste stimulation or sweetness by methyl glycosides requires an axial methoxyl group at position C-1 and equatorial hydroxyl groups at positions C-2-C-4. The requirement at C-3 is not known in mammals.

Therefore, an electrophysiological experiment was conducted in which the summated responses of the gerbill's chorda tympani nerve were compared when the tongue was stimulated by flowing sugar solutions, sucrose, methyl α-D-glucopyranoside (MADGLU) and methyl α-D-allopyranoside (MAD-ALLO). The results indicated that MAD-GLU was more stimulating than MAD-ALLO.

Therefore, the requirements for maximal taste stimulation by methyl glycosides in the gerbil are the same as observed in other insect species - an axial methoxyl group at position C-2, C-3 and C-4. Since many diverse animal species respond to sucrose and methyl glycosides in the same manner, we may be seeing parallel evolution of sugar taste specificity.

The study was supported by a grant from the National Institute of Health (Grant # MO1 R01 #16022-01).
CHEMICAL COMMUNICATION IN CROCODILIANS.
Peter B. Johnson and Judith L. Wellington
Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104.

The ability of yearling alligators (Alligator mississippiensis) to detect odors was measured. While intraspecific chemical communication is an important aspect of the biology of many amphibians and reptiles, crocodilians have not been studied in detail. Four prominent scent glands are present, two mandibular and two inside the cloaca, possessed by both sexes. Seventeen yearling animals (50-60 cm in length) were presented with seven stimuli while gular pumping was recorded as a measure of the sniffing response to odors. Stimuli tested were: (1) two samples of cloacal gland secretions from adult males; (2) adult male mandibular secretions; (3) citronellol; (4) androstenediol; (5) amyl acetate; (6) blank control. The animals were restrained as in all previous experiments, and odors were presented in an airstream drawn across the animal's snout by an exhaust fan. Stimuli were presented for 20 sec following a 20 sec prestimulus period. The number of gular pumps greater than those recorded during the prestimulus period was counted for the stimulus period. All samples were presented twice, each set in random sequence, and the responses averaged for each animal.

The results indicated that alligators responded most strongly to the cloacal gland secretions. Cloacal and mandibular gland secretions elicited responses which were significantly different from blank, androstenediol, citronellol, and amyl acetate (p < .01). Of the pure compounds, only the response to androstenediol was significantly different from the blank. Responses to the two cloacal gland secretions were not different from each other but were different from the mandibular gland secretion (p < .05). The data demonstrate that yearling alligators responded differently to adult male secretions compared with other odors. The role that these odors play in the biology of the alligator is not yet known.

PITUITARY CONTROL OF ODOR ELICITED LH AND SNIFING RESPONSES IN MALE RICE.
Robert E. Johnson
Department of Psychology, Cornell University, Ithaca, NY 14853.

The urine of female house mice affects males in a number of ways: it causes sniffing, investigation, ultrasonic calling, and LH release from the pituitary. Another male's urine does not have the same effects. In the present experiments I investigated the hormonal control of the factors in female urine that influence sniffing, as well as the methods used to identify them. One approach was simply to measure the amount of the hormone from which these effects were derived. In order to sample blood for LH assays male mice were prepared with indwelling cannulae five days prior to testing. For each test ten sequential 25 microliter samples were withdrawn at 5 min intervals and subsequently assayed for LH concentration by micro RIa techniques. The 5 samples established baseline LH levels, a stimulus was then presented, and the last 3 samples measured the response. Urine from ovariectomized and intact females elicited LH responses but urine from hypophysectomized females and intact males did not, demonstrating the importance of the pituitary control of the factors responsible for alterations in LH levels. These factors may be in the same class as those responsible for eliciting ultrasonic calling, as Nyby has published similar results.

The behavior data suggest that both the pituitary and the ovary influence urine odors that elicit sniffing. Sniffing at the urine of ovariectomized females was significantly less than at urine of intact or sham-operated females, but significantly more than at urine of hypophysectomized females; responses to hypox urine and male urine were not different.

These experiments suggest that there are at least two cues in the urine of male mice that influence males, that these cues have different hormonal controls, and that the messages and functions of the two cues may be quite different.
ACUMULATION AND DISPERSAL OF TETRAHYMENA (CILIATA) IN RESPONSE TO AROMATIC AND INDOLE AMINES. Andrew Kehr and J. Levandowsky. PasKey Laboratories, Pace University, N.Y., N.Y. 10338

Responses to aromatic and indole amines and amino acids were studied in the freshwater ciliate, Tetrahymena thermophila, using an assay based on rectangular microcapillaries (0.2x2.0 cm). Ciliates containing test and control solutions were submerged in a suspension of washed, starved cells for 1/2 hr; cell numbers in test and control capillaries were counted and compared by standard statistical methods.

Responses to different levels of tyrosine were trimodal: accumulation at 10^{-2} - 10^{-3}; disposal (repulsion) at 10^{-4} - 10^{-6}; accumulation again at 10^{-7} - 10^{-10}. This pattern was repeated in many experiments. Phenylalanine exhibited the higher range responses, but not the attraction at very low levels. Dihydroxyphenylalanine (DOPA) gave accumulations from 10^{-5} - 10^{-7}. Synthetic substituted tyrosine analogs gave various portions of the response pattern, and in some cases competitively inhibited parts of the tyrosine response.

A variety of indoleamines were studied: tryptophan, tryptophol, tryptamine, 5-OH tryptophan, serotonin, indoleacetic acid (IAA), and melatonin. These produced accumulations at moderately low concentrations (above 10^{-7} or 10^{-8}), except for tryptophan, which gave dispersion (repulsion). Tryptophol produced a strong accumulation response down to 10^{-9}.

SPECIFICITIES OF Olfactory receptors. Steven J. Kleene and Robert C. Gesteland. Northwestern University, Evanston, Ill. 60201

The number of olfactory receptor types and the specificity of each in the leopard frog (Rana pipiens) are being investigated by means of a previously published procedure (M.L. Getchell and R.C. Gesteland, Proc. Natl. Acad. Sci. USA 69, 1494-1498 (1972)). The head of the frog, after removal of both dorsal olfactory epithelia, is maintained in a water-saturated atmosphere of 95% O_2/5% CO_2. The electroolfactogram (EOG), a measure of the summed olfactory receptor potentials in response to a given odorant stimulus, is measured from the ventral epithelium with a saline-filled micropipette. Exposure of the epithelium to a solution of N-ethylmaleimide (NEM) in Ringer's reduces the amplitude of the EOG to less than 20% of its previous value. If a particular odorant is present in solution during the NEM treatment, however, the EOG in response to that odorant (or to others presumably handled by the same receptors) gradually returns toward its pre-treatment amplitude. The EOG amplitudes in response to odorants handled by other receptor types do not recover. In each experiment, the left epithelium of the frog is treated with both NEM and the protecting odorant; the right side is treated only with the protecting odorant as a control. Such experiments have been performed using a number of odorants as protecting stimuli during the NEM treatment. Olfactometrically, they encompass a wide variety of chemical structures and perceived odor qualities. We are also investigating the effects of NEM treatment on single unit activity and motility of olfactory cilia.

This work was supported by NIH Grant No. 1 P32 NS06600, 3-B01 NS14663 and NSF Grant No. BNS 78-17479.

The gymnemic acids and zilaphins (from G. sylvestre and Z. johoba) selectively suppress human sweetness perception, inhibit behavioral and taste receptor cell action potential responses to sucrose, and elicit action potentials from a fly chemoreceptor cell ("fifth" cell). Chemical and psychophysical data support a role for modifier surface active properties, and we have proposed a biphasic membrane penetration process for the action of these modifiers on receptor cells. To characterize and evaluate the action, we measured the magnitude of stimulatory and inhibitory effects of a concentration series of purified gymnemic acids (GKA) and zilaphins (ZJ-A) on fly (T. regius) larval chemoreceptor cells and followed the inhibitory effects for 10 min after modifier treatment.

Stimulation of the fifth cell and inhibition of the response to sucrose were significantly affected by modifier concentration (p<0.03). The lowest concentration of KGA or ZJ-A that produced a significant inhibition (p<0.02) was 0.025%, which is the critical micelle concentration (CMC) for KGA. Inhibition and stimulation increased with concentration to 0.03% for KGA or 0.075% for ZJ-A and then decreased. Although CMC may be necessary for inhibition, the shapes of the dose-effect curves suggest that some factor other than micelle concentration is responsible for the overall concentration effects.

There was significant regression slope for increasing effects of KGA stimulation, KGA inhibition, ZJ-A stimulation and ZJ-A inhibition (p<0.3). Regression of medians for the various increasing effects on each other yielded slopes of 0.64 ± 1.35 (p=0.05). Thus mechanism for stimulation and inhibition by KGA and ZJ-A may be similar.

During the 10 min after modifier treatment, firing rates to sucrose were initially depressed and then increased and oscillated near control values. As predicted by the biphasic membrane penetration model, the increase after the most potent KGA concentration was significantly faster than that after the most potent ZJ-A concentration (p<0.005).

Supported by NSF BNS 77-09925 to L.M.K. and B.P.H. and NIH 3 F32 NS00429-01A1 to L.M.K.

ODORANT RESPONSES OF Na^+K^+ ATPase ACTIVITY BY PREPARATIONS FROM PAIRED TURBINALS OF RAT OLFATORY TISSUE. R. D. Koch and Herman Joseph, Dept. of Biochem., Miss. State Univ., Miss. State, MS 39762.

Olfactory tissue was obtained from 50 adult male Sprague Dawley rats. The olfactory capsular containing the turbinate tissue was removed and then individual turbinals removed from the left and right side. Eight groups of turbinals (four from each side) were separated and composite samples of each turbinal prepared. Homogenates of each composite sample were made using 0.32 M sucrose solution and nerve ending particle (NEP) fractions were prepared by differential centrifugation.

Na^+-K^+ ATPase activities and their responses in vitro to seven odorous chemicals were measured for each NEP fraction. Each odorous chemical, including the optical isomers d- and l-carvone, generated different patterns of responses of Na^+-K^+ ATPase activity in the various fractions. Analysis of the results from paired left-right turbinals showed no indication of bilateral symmetry of the odorant responses.
URINE AND ITS ODORS ARE KNOWN TO HAVE COMMUNICATION SIGNIFICANCE FOR MANY ANIMALS FOR VARIOUS REASONS: COURTSHIP, MATING, TERRITORIALITY, ETC. THIS INVESTIGATOR EXAMINED THE DOG'S BEHAVIORAL RESPONSES IN AN OPEN-FIELD SET-UP TO SAMPLES OF STRONG AND VAGUE URINE OF FEMALE DOG URINE, MALE DOG URINE AND HUMAN URINE. AN ANALYTICAL TECHNIQUE USED FOR FRACTIONATING SOME OF THE URINE SAMPLES WAS HIGH PRESSURE LIQUID CHROMATOGRAPHY (HPLC). IT PROVED TO BE A GOOD APPROACH FOR SEPARATION OF CHEMICALS IN THE URINE WHICH ARE OF INTEREST TO THE DOG. IT SHOWS GREAT POTENTIAL FOR IDENTIFICATION OF SOME OF THESE CHEMICALS OF INTEREST. BEHAVIORAL RESPONSES TO OTHER ODORS POPULAR IN OLFACTORY LITERATURE WERE ALSO OBSERVED. BEHAVIOR WAS FILMED AND RECORDED WITH A COMPUTERIZED EVENT RECORDING DEVICE. TELEMETRY WAS EMPLOYED TO COLLECT HEART RATE DATA AS A PHYSIOLOGICAL RESPONSE TO THE ODORS.

ODOUR ELICITED PATTERNS OF 2-DEGOXYGLUCOSE UPTAKE IN THE SALAMANDER OLFACTORY PATHWAY USING HIGH RESOLUTION AUTORADIOGRAPHY.
Doron Lancet, Charles A. Greer, Gordon M. Shepherd, John S. Kauer
Sections of Neuroanatomy and Neurosurgery, Yale University School of Medicine, New Haven, CT 06510
We have examined uptake patterns in the olfactory epithelium and of the intact tiger salamander (Ambystoma tigrinum) in response to stimulation with amyl acetate using the conventional 2-deoxyglucose (2DG) technique and a modification designed for obtaining resolution approaching the cellular level (cf. Lancet et al., this volume). Animals were exposed for 1-2h to odor at the controlled flow rate and concentration after injection of 14C-2DG into the dorsal lymia sac. Using high resolution autoradiography, increased uptake in the nasal sac was observed in the Bowman's glands and in some superficial regions of the epithelium extending from the supporting cell nuclei level to the mucosal surface. The epithelial uptake was distributed heterogeneously across the mucosal sheet; differences were observed between the dorsal and ventral epithelia as well as along the anterior-posterior and medial-lateral axes. In the olfactory bulb the olfactory nerve and glomerular layers showed increased uptake using both the conventional and high resolution methods. Different regions of these layers displayed varying levels of 2DG uptake. Employing the high resolution technique there appeared to be defined regions of activity related to specific intra- and extraglomerular compartments. In addition, discrete foci approximating the size of cellular structures were seen in the external plexiform, mitral body and granule cell layers. Some of these granule clusters appeared to be superimposed on individual cells. The uptake patterns in the epithelium are in accord with electrophysiological analyses supporting heterogeneity in the distribution of receptor types in the salamander olfactory mucosa (Kauer, J.S., 1984, LeMagen and Mclnon eds., 125-133 (1977), Kudel, J., Mackay-Sim, A. and Moulton, D., 1984, van der Starre ed., 163-166 (1984)). In the barrel the uptake patterns in the glomerular layer is consistent with the spatial distribution of odor elicited 2DG uptake in other species. In conclusion these results demonstrate that the use of high resolution 2DG autoradiography provides the potential for the simultaneous examination of the metabolic changes in cellular components mediating odor processing at all levels of the salamander olfactory system. Supported by USPHS grants NS-78-16545, F32-NS05159, NS-10174.

The 14C-2DG method has proven very effective in assessing the functional organization in the olfactory system (Stewart et al., 1975). It has been shown that, when using the conventional Sokoloff technique, resolution only opens to approximately 20um, or at the laminar level. This problem may be circumvented by utilizing high resolution autoradiography technique which affords discrimination down to 2um, or at the cellular level. We have been adapting the procedure of Sejnowski et al. (1972:449-457). Essentially, the procedure entails freeze substitution of the tissue in acetone at -35 degree C, followed by plastic embedding, sectioning, at 1um, coating with photographic film and exposing for 2-12 weeks.
In following controlled odor stimulation experiments with rats the high resolution procedure revealed a laminar distribution of 14C-2DG uptake consistent with that previously reported using the conventional Sokoloff procedure. In addition, we observed differential uptake at the level of the single glomerulus. Adjacent glomeruli often had different levels of uptake and within a single glomerulus higher activity was observed in the internal neuropil than in the surrounding periglomerular border.
We also utilized the high resolution 3H-2DG method with the turtle in vitro preparation (Greer et al., 1985). We followed electrical stimulation of the olfactory nerve, differential laminar uptake patterns were more distinct than previously observed with 14C-2DG and conventional processing. In regions distant from activated glomeruli, there was a particularly sharp boundary between the external plexiform layer (high grain density) and the glomerular and nerve layer (lower density). In several cases the grain density was remarkably higher over neuropil than immediately adjacent cell bodies, demonstrating the high level of resolution attainable with this technique.

These studies are increasing our knowledge of the morphological substrates of 2DG uptake in the olfactory bulb. Similar application of this technique to olfactory epithelium in situ in the salamander, also reported in this volume, corroborate these findings. Continuing studies are aimed at further improvement of resolution and extending the investigations to the ultrastuctural level.

ODOUR SPECIFIC PATTERNS OF DIFFERENTIAL SENSITIVITY INHERENT IN THE SALAMANDER OLFACTORY EPITHELIUM. Alan Mackay-Sim and David G. Moulton. Department of Physiology, University of Pennsylvania and V.A. Medical Center, Philadelphia, PA 19104
The anterior and posterior regions of the salamander olfactory epithelium show different responses to some odors, even when chromatographic-like odorants by the mucosa is eliminated (Kubie and Moulton, Soc. Neurosci., Abstr., Vol. 5, p 129, 1979). We have undertaken a more detailed mapping to elucidate the resolving power of inherent spatial patterning. Electroolfactograms (EOGs) were recorded at different points of the epithelium after punctate odorant stimulation at the electrode tip. We directly compared relative sensitivity to different odorants by measuring EOGs at 30 points across the ventral olfactory mucosa. At each of these points, amplitudes of at least 3 EOGs were measured in response to 1 sec pulses of each of two odorants. Maps for each odorant pair were made of epithelia from at least 8 animals. These maps reveal differential sensitivity across the epithelium that is more complicated than simple anterior/posterior differences. For example, the maps for pinene and limonene, both generally posterior stimulants, also reveal smaller areas (4-7 mm) with extremely large responses. At present though, no differences in the distribution of sensitivity to pinene and limonene can be detected. In contrast, the distribution of sensitivity to eugenol and iso-eugenol can be clearly distinguished. In addition to distinct expression in the dorsal anterior epithelium, there is a substantial sensitivity to each of these odorants (often 2 mm apart), the epitheium can be divided into a postero-lateral segment (4-1/3 of the ventral olfactory epithelium) which is absolutely more responsive to eugenol, and the rest, which is absolutely more responsive to iso-eugenol. Response maps for other odorants (propanol, butanole, decanol, heptaldehyde) reveal areas on each epithelium that are highly responsive to the odors. The locations of these areas are more variable, but distinct from the area most responsive to pinene and limonene. The map of responses to amyl acetate reveals a distinct ridge of high sensitivity commonly stretching anteriorly for about 2 mm from the posteriorly located pinene or limonene sensitive area. We conclude that exist regions of enhanced sensitivity specific for different odorants. The variations in the shapes and positions of these regions indicate that the olfactory epithelium may have a well developed capacity to discriminate among odorants on a morphologic basis. (Supported by NIH grant No. R01 NS 1067-05.)
The response properties of olfactory bulb neurons depend on 1) the pattern of activity evoked among receptor axons, 2) the integrative mechanisms by which these inputs are summed, and 3) the influences of olfactory bulb interneurons. The two day old rat pup has a simplified olfactory bulb containing interneurons, all of which appear to be immature when stained and viewed with Golgi techniques. We recorded single unit activity from the olfactory bulb of six day old rat pups to learn about the integration of receptor activity by mitral cells. In some preparations, neurons were recorded while the model's noses were closed, restricting stimulus events to the inspiratory phase of the respiratory cycle. Respiratory events were monitored. In other preparations, neurons were recorded after the animals' noses were opened. Odorants were delivered directly to the epithelium and EEG activity recorded. Some were excited by weak to moderate concentrations of effective stimuli (0.2 to 22 saturation). These cells were always driven in synchrony with inspiration. Others were inhibited by relatively strong stimuli (2 to 10% saturation). Neurons driven with the open nose preparation always exhibited the same pattern of activity. This consisted of increased excitation during weaker stimulus events, excitation followed by decreased activity for moderate stimuli, and inhibition for stronger stimuli. The concentrations evoking these responses differed by as much as two log units for different neurons. Neurons of olfactory bulb response properties resemble excitatory responses evoked from rat olfactory receptor neurons in all respects except that bulb neurons do not exhibit decrementing action potentials prior to periods of diminished activity. These response properties differ radically from those observed in adult rat olfactory bulbs.

This work was supported by NIH Grants No. 1-F18-NIO6070 and No. 3-ROI-N814663 and NSF Grant No. BNS 78-1747.

Systemic administration of gold thioglucose (GTG) causes histological damage to the central nervous system, primarily of the hypothalamic region but not exclusively in the ventromedial-arcuate hypothalamus (VMH) and is well known to produce hyperphagia and consequent obesity. To determine whether GTG produces a biphasic change in sensitivity to insulin hypoglycemic convulsions-a decrease at early times (16 & 24 hr) and an increase at later times (2 weeks after GTG treatment). Both changes are prior to weight gain. For both changes, blood glucose shows that the hypoglycemic response to insulin is the same in the convulsive response to hypoglycemia, rather than in the degree of hypoglycemia in response to insulin. CRA 0.2 mice were treated with GTG (0.88 mg/g IP), gold dichromate (GMX0.8 mg/g IP) or Na-saline, all in 0.1M saline. GMX does not cause the histological damage or hyperphagia and is used as a control for nonspecific effects of gold. In addition, GMX is in the convulsive response to hypoglycemia, rather than in the degree of hypoglycemia in response to insulin. CRA 0.2 mice were treated with GTG (0.88 mg/g IP), gold dichromate (GMX0.8 mg/g IP) or Na-saline, all in 0.1M saline. GMX does not cause the histological damage or hyperphagia and is used as a control for nonspecific effects of gold. In addition, GTG did not alter sensitivity to nitroprusside or fluoracetate induced convulsions, i.e. did not alter the generalized convulsive threshold or even all metabolic convulsions. AC 3-9 hrs. after GTG, neither a change in sensitivity to insulin hypoglycemic convulsions nor histological damage in the VMH visible with cresyl violet were seen. The data suggest that GTG lesions a functionally described "GTG lesioned glucostat" - a glucose sensing and regulatory center involved in adjusting brain function in insulin hypoglycemia. A relatively discrete control center, not just a generalized power failure, may be responsible for the neurological deficits. In accord with this, other data show that in some species GTG is not markedly depleted despite insulin hypoglycemic convulsion and coma. The biphasic nature of the change in sensitivity suggests two opposite regulatory components. NIH # SR18 AM 21476.
SELECTIVE, REVERSIBLE ANOSIA IN TIGER SALAMANDERS (AMBLYSCURA TIGRINUS) INDUCED BY CHEMICAL TREATMENT OF THE OLFACTORY EPITHELIUM. J. Russell Mason, Monell Chemical Senses Center, Philadelphia, PA 19104 and Thomas Hellman Morton, Department of Chemistry, Brandeis University, Waltham, MA 02254.

Tiger salamanders (Amblyscura tigrinum) can be conditioned to respond to a variety of reagent grade odorsants and can discriminate among them.1-3 These phenomena permit the behavioral assessment of selective alterations of olfactory acuity reported here. Tiger salamanders were trained to respond to two different odorants in an olfactometer. Each animal was conditioned to show avoidance to cyclohexane (3.1 x 10^{-6} M in air) and dimethyl disulfide (0.4 x 10^{-6} M in air) but not to n-butanol (1.6 x 10^{-6} M in air). Then, nasal lavages were given with various concentrations of cyclohexane, dimethyl disulfide, n-butanol and ethyl acetate (0.05 M, 0.01 M, and 0.001 M in normal saline solution), and the animals tested for maintenance of conditioned responding to cyclohexane and dimethyl disulfide. The results clearly demonstrate that 0.05 M n-butanol lavages with cyclohexane or ethyl acetate produce selective, reversible anosmia for cyclohexane (P < 0.01), while lavage with dimethyl disulfide produces a selective reversible anosmia for that odorant (P < 0.005).

These findings are the first to show chemical induction of a durable and concentration-dependent selective anosmia in laboratory animals. They are consistent with the notion that covalent bond formation between odorant and receptor plays a role in olfactory detection of at least one class of odorants.

SELECTIVE, REVERSIBLE ANOSIA IN TIGER SALAMANDERS (AMBLYSCURA TIGRINUS) INDUCED BY CHEMICAL TREATMENT OF THE OLFACTORY EPITHELIUM. J. Russell Mason, Monell Chemical Senses Center, Philadelphia, PA 19104 and Thomas Hellman Morton, Department of Chemistry, Brandeis University, Waltham, MA 02254.

It is not known whether covalent bonds are ever formed between odorant molecules and olfactory receptors in the course of transduction. If the belief that it is possible to recognize ketones or aldehydes by odor alone has any foundation, then it suggests a characteristic mode of binding carboxyl groups at the receptor. One well-known bonding mode for ketones and aldehydes in biological systems is through formation of Schiff base with a protein,

\[\text{CO} \quad + \quad \text{H}_2\text{N-protein} \quad \rightarrow \quad \text{C=N-protein} \]

We have explored the hypothesis that olfactory detection of ketones can be temporarily blocked by competitive inhibitors of Schiff base formation. For model studies, we have examined the Schiff base-forming enzyme acetoacetate dehydrogenase (AAD). The polypeptide is known to bind cyclohexane,1 reversibly.2 We find that ethyl acetate,2 competitively inhibits AAD. The proposed mechanism for inhibition by 2 shown below is based on precedents for other known inhibitors of AAD.2

\[
\begin{align*}
\text{protein-NH}_2 & \quad + \quad \text{CH}_2\text{C}\text{H}_2\text{C} \text{O} \text{H} \text{H}_2 \text{C} \text{H} \text{C} \text{O} \text{H} \text{H}_2 \text{C} \\
\text{protein-NH} & \quad + \quad \text{CH} \text{C} \text{H}_2\text{C} \text{O} \text{H} \text{H}_2 \text{C} \text{H} \text{C} \text{O} \text{H} \text{H}_2 \text{C} \\
\text{protein-NH} & \quad + \quad \text{CH} \text{C} \text{H}_2\text{C} \text{O} \text{H} \text{H}_2 \text{C} \\
\text{protein-NH} & \quad + \quad \text{CH} \text{C} \text{H}_2\text{C} \text{O} \text{H} \text{H}_2 \text{C} \text{H} \text{C} \text{O} \text{H} \text{H}_2 \text{C} \\
\end{align*}
\]

2-deoxyglucose (2DG) experiments (Stewart et al., 1979, J. Comp. Neurol. 185; 715) suggest that different odors activate different small areas of the olfactory bulb and that the activated area expands as the intensity of the odor is increased. This suggests that the sensitivity for a particular odor quality falls off with the distance away from its focus of activity on the bulb surface. When an increasing intensity of different input is simulated in a computer representation of the olfactory bulb nerve, fronts of excitation and inhibition radiate out from the center of the activated area. Different temporal patterns of activity thus appear in output elements at different distances from the center. The range of temporal patterns produced in different parts of the output matrix is similar to that seen in the olfactory bulb (Meredith & Moulton, 1976). The output for each of these "cells" is determined by the interaction between the excitatory input and lateral inhibition from surrounding points via two mechanisms which simulate granule and periglomerular (PG) cell inhibition. In the program, the inhibitory influence radiates out from each matrix location to the extent extended in Pinching's anatomical analysis of the spread of cell processes in the rat olfactory bulb (Olshansky & Taste IV, 40, 1972). Output cell to output cell inhibition via the granule cell pathway depends on the level of magnitude of the inhibitory reduced according to the distance between the cells (cable loss) and the fractional area of overlap of their secondary dendritic fields. The PG inhibition includes dendro-dendritic inhibition from PG cells belonging to the same glomerulus and axodendritic inhibition from PG cells belonging to surrounding glomeruli. It depends on the level of excitation of neighboring cells and these receive their input directly (from olfactory axons) as well as indirectly from the output cells of their same glomerulus (via reciprocal synapses). The effectiveness of these inhibitory pathways can be independently varied in the computer program as can the intensity and distribution of excitatory input, the proportion of cortical and PG network input, and the indirect PG excitation and the length constants of output cell processes. Temporal patterning of the output activity is dependent primarily on the spatial distribution of excitatory input but is relatively unaffected by a wide range of values for other variables. (Supported by NINCDS grant NS 14453)

To learn whether there is an age-related loss of taste receptors, we compared the number of taste buds in the circumvallate papilla in two groups of Wistar-derived rats: ten aged 6 months and eleven aged 15 months. (Estimated human equivalent ages are 25 and 70 years, respectively.) The circumvallate papilla was dissected from formalin-fixed tongues, embedded in paraffin, and cut in serial transverse sections that were stained with hematoxylin and eosin. To determine the number of taste buds per papilla, every counted every appearance of all taste buds; then the total of all appearances was divided by the average number of sections occupied by one taste bud.

There is no significant difference in the number of circumvallate taste buds in these two age groups. For rats aged 6 months, the number of buds per papilla is 650 ± 61 (S.D.), compared to a mean of 468 ± 88 (S.D.) for 24 month rats (t = 0.30, df = 19, p > 0.10). These results contrast with those in an earlier report on age-related changes in mouse circumvallate papilla. Between 5 and 24 months in the mouse, the number of taste buds per papilla decreased by 25% (Conger & Wells, Radiation Res. 37:131-40, 1969).

Since we did not use the same method as Conger and Wells for counting taste buds, procedural variables may account for the differing results. We will extend our study in rat by replicating and evaluating the Conger-Wells procedure. Our data also contrast with reports of age-related decreases in the number of taste buds in human circumvallate papillae dissected from cadavers (e.g., Arey et al., Anat. Rec. 64:19-25, 1935). Recently, however, Arivson found no change in numbers of taste buds in fungiform papillae from humans aged 2 days to 92 years (Scand. J. Dent. Res. 87:435-442, 1979). Since some investigators have attributed reported loss of gustatory acuity in older individuals to loss of taste buds, it is important to pursue studies of possible age-related changes in taste organs and attempt to resolve some of the discrepancies in the literature.

AN ELECTROPHYSIOLOGICAL PARAMETRIC STUDY OF THE STIMULATION VARIABLES AFFECTING THE OLFACTORY NERVE RESPONSE. M. M. Mozell, P. M. Sheehan, S. W. Swick (SUNY, Upstate Med. Ctr., Syracuse, N.Y. 13210), and D. E. Horgan (St. Lawrence U., Canton, N.Y. 13617)

The stimulation variables to which the magnitude of the olfactory nerve response has most often been related include motor, the effects of flow rate and, to a lesser degree, delivery rate have also been considered. However, these three variables are derivatives of three more primary variables, viz., number of molecules, N, the volume of the vehicle, V, and duration of the presentation (T). Concentration (C) is then given by N/V, flow rate (F) by V/T, and delivery rate C/T or the number of primary and derived variables to which, either singly or in a variety of different settings, the olfactory response magnitude could conceivably be related. If these experiments will be more complicated if, in their impact upon response magnitude, these variables were to interact significantly with each other.

In an initial approach to this dependences, we have evaluated the capacity of these variables, both singly and in all possible sets of two and three, to indicate the summed multunit discharges recorded from the frog's olfactory nerve. The odorant (octane) was presented at two levels of "smell" volume (v) and two levels of "smell" duration (T) such that these levels were in 2:1 ratios and fell within the frog's normal repertoire. Likewise, given at two levels in a range of the number of molecules (N), and these levels were chosen from our earlier work to give midrange responses. Thus, we presented eight different combinations of N, T and V which is defined by three levels of C, F and D with each level twice its predecessor. All 24 combinations of primary level variables were randomly assigned in a factorial design to each of seven frogs and an analysis of variance was performed on the logarithms of the data.

The effect of each primary variable was highly significant (p<0.01). No single primitive (C,F,D) adequately accounted for all of the effects. The effect of doubling F was greatest for N and next greatest for C; but T was the best single indicator of olfactory magnitude when the other three levels of C but just two of N). The best, as well as adequate, two-variable indicator of significant effects was (N,F), but the next best, (C,T), was not significantly worse than the others. The observed effect of doubling F or C was substantially greater at high v than at low V, but neither this nor any other interactive effect was significant (p>0.05). These experiments were designed to consider how the physical and anatomical properties of the olfactory passage might interact with stimulation variables and how well the peripheral response is represented by the summed multunit discharge. (Supported by NIH Grant NS03904)

EFFECTS OF AGING ON CHEMOSENSORY PERCEPTION OF BLENDED FOODS. Claire Murphy, Nominal Chemical Senses Center, 1500 Market St., Philadelphia, PA 19104

Clinicians have occasionally used samples of food, usually in a form which minimizes tissue cues, to evaluate problems of anosmia. Such reports on the relationship between olfactory function and perception has led this study to attempt to assess the gustatory problems of the elderly. In hair studies, college-aged controls were significantly better at identifying the group of 24 foods. Difficulty in identifying blended foods could result from several factors: olfactory, trigeminal, gustatory or cognitive. To investigate the relative importance of these factors, a series of studies was conducted. Subjects were either 18-26 or over 65 years. All were ambulatory, non-institutionalized, and, within the last year, non-hospitalized. All were 12 items chosen from the list used by Schiffman, freshly cooked without seasoning, blended or thickened with corn starch, and presented at a constant temperature. In the first experiment, each blindfolded subject was asked to identify the blended foods on the basis of taste and smell. He was given exposure to each stimulus with no feedback and then as many sessions with feedback as were necessary to reach perfect performance, or ten sessions, whichever occurred sooner. Young subjects were significantly better than the elderly at food identification, both on the first exposure and after feedback. With extended practice, all subjects improved their identification abilities. By the fifth session, the various groups of college students (males, females, smokers, non-smokers) averaged between 95% and 100% correct and the elderly non-smokers averaged 94% correct. Elderly smokers did not improve as much: females averaged 83%, males 80% correct. In a second experiment, subjects were asked to identify the blended foods with the nostrils pinched closed (i.e., without the aid of olfaction). The task was equally difficult for the food exposure: ANOVA revealed no differences in percent correct overall or for individual foods. Both cognitive and sensory factors contributed to the ability to identify the blended foods, since performance in the experimental condition could be significantly improved with practice and feedback. However, blocking olfaction in all subjects resulted in scores for young and elderly which were essentially the same as the average score for the elderly in the open-nasal condition (415). These data support the hypothesis that sensory differences between elderly and young subjects in the ability to identify blended foods can be ascribed largely to a deficit in olfaction or the trigeminal sense, rather than in taste. (This research, supported by the Department of the Army, was conducted at UCLA. I thank Dr. Howell Jones, Dr. Herbert Neiselman, and Mr. Norman Hans.)
ODORANT RELATED 2-DEOXYGLUCOSE UPTAKE IN THE SALAMANDER OLFACTORY EPITHELIUM. Muriel E. Nathan and David G. Moulton. V.A. Medical Center and Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104.

Odorant related 2-deoxyglucose (2DG) uptake permits evaluation of relative levels of metabolic activity in the central nervous system. This procedure was used to assess the odorant related metabolic activity in the tiger salamander olfactory epithelium during odor stimulation. Odorants, diluted by an airstream (500 ml/min.), were delivered to the external olfactory epithelium via a large pipette (10 mm) positioned 1-3 mm above the receptor sheet on one side of the nasal cavity. A vacuum line removed odorant from the airstream. Odorants were delivered intermittently at 3-5 seconds out of every minute. After a prestimulation period of 10 minutes, the salamanders were injected with either 10-20G 2DG (12CI/mM) or 10-20G 2DG (5CI/100mM) and further stimulated with odorant for 90 minutes. The animals were then decapitated; right and left epithelium and brains were frozen in liquid Freon (-78°C) and sectioned in the cryostat (-10°C). Sections (16μ) were prepared from the 2DG stained animals for autoradiography, whereas sections from both sides were placed on emulsion-coated (NTBII) slides. Films were developed after 14 days of exposure and analyzed by computer densitometry. The animals were then analyzed after 24 hours and with dark- and light-field microscopy.

Epithelia exposed to limonene showed a posterior focus of increased 2DG uptake, whereas control epithelia or those exposed to butanol or propanol did not. The films images read by the computer densitometry showed that anterior and posterior areas on control epithelia were not significantly different, while different limonene-exposed animals showed anterior-posterior differences in 2DG uptake.

The presence of an active focus in the epithelium lying adjacent to the limonene-stimulated zone confirms electrophysiological data obtained in this laboratory (Kubie, Mackay-Sim and Moulton, Gistation and Taste VII, 1981).

(Supported by the Medical Research Service of the Veterans Administration, Wash., D.C.)

ON THE HAMSTER’S RESPONSE TO TASTE MIXTURES. Geoffrey H. Novellia, Rockefeller University, New York, NY 10021; Marion E. Frank, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06032.

Taste stimuli containing two or more taste qualities may be analyzed by the gustatory system into their component qualities, or may be synthesized into a new taste quality different from either of the component qualities. The paucity of taste quality adjectives (sweet, salty, bitter, sour) is seen as indicating that there are only these four taste qualities; it is also possible that the language is simply not rich enough as is human taste experimentation. Whether or not there is a new quality synthesized from, say, a sweet-salty mixture different from either component quality, but for which there were no appropriate adjectives, we have performed psychophysical experiments dependent on the use of adjectives to determine the existence and quality of the mixture. The mixture was analyzed into the two components for which there are good adjectives.

Experiments with hamsters, without the use of taste-quality adjectives based on the hamster vocabulary (adequately to discern which adjectives they use for taste qualities), eliminate this criticism. Hamsters are exposed for one or two weeks, one hour a day, to one of the components of a taste mixture, rendering this taste stimulus non-novel, and hence non-salient for use as a CS in a taste aversion. Animals are then given a taste mixture containing both the novel and the non-novel taste and are then made ill. Animals without pre-exposure to one of the components show a strong aversion to the mixture, and a lesser, but noticeable aversion to each of the components. Animals conditioned with the mixture after the pre-exposure to one of the components show no aversion to the mixture or the component, and show an aversion to the novel component which is just as strong as the aversion they show to the mixture. This is the case for the mixture of HCl and quinine. Presumably the aversion to the mixture, which was used, would be stronger than the aversion to the novel component, since these component qualities were synthesized into a new taste quality. Results are more complicated for the mixture of HCl and quinine, and we attribute this to the fact that HCl seems to taste both bitter and sour to the hamster (by other experimental criteria). So far we conclude that we cannot analyze taste mixtures into their component qualities.

FLAVONOID STIMULUS OF INSECT BEHAVIOR. Dale H. Morris. 642 Wasmel Laboratory, University of Wisconsin, Madison, WI 53706.

Flavonoid aglycones are important stimulants of insect behavior. Results from blossoms of several flavonoids for effects on Scyloptus multistatus feeding indicated correlations with (1) the oxidation state and/or (2) functional-group characteristics of the flavanoid structure. However, the absence of carotenoids or other pigments, such as dihydrochalcones, phlorin and 2,6-dihydroxy-4‘-methoxy dihydrochalcones, that have relatively reduced C6 units which lack hydroxyls but each have a carbonyl group nearby (i.e., inhibitory) to insect feeding. They were significantly (0.05 or 0.01) more allomonic than the two tested dihydrochalcones. Our findings seem to indicate that the shift in state of oxidation of the propenyl unit of flavonoids from highly reduced to highly oxidized is accompanied by a change in elicited insect behavior from excitation to inhibition. Presence of a hydroxyl and/or carbonyl on the C6 unit apparently secondarily influences the behavior elicited. (Research supported partially by N.S.F. grants No. BMS74-00993 and PMT77-0827).

Several recent studies have indicated that dopamine (DA) is present in the periglomerular cell population of the turtle olfactory bulb and may serve as a neurotransmitter or neuromodulatory function (Kudelka et al., Neuronci. Letters, 1: 65, 1975; Halasz et al., Brain Res. 152:233, 1978; Priestley et al., Brain Res. 165:169, 1979). In the course of physiological studies of the isolated turtle olfactory bulb, we have carried out preliminary studies of the possible role of dopamine in this structure.

Single volleys in the lateral olfactory tract (LOT) or olfactory nerve (ON) generate large field potential responses in the olfactory bulb (Nowojy et al., Soc. for Neurosci. Abstr. 4: 263, 1978; Halasz et al., Brain Res. 156:169, 1979). Dopamine was added to the Ringer solution in the bath in concentrations of 10-7M to 10-5M. In the presence of DA, there was an increase in latency, and a slight decrease in peak amplitude, over most of the concentration range, with a steep fall in amplitude at the highest concentrations. The conduction velocity of the ON was not affected by DA. Using paired volleys, there was a profound and prolonged depression of responses to the test volley, over periods of several seconds, as previously reported. In the presence of DA there was less depression of the test response. The dopamine agonist apomorphine (10-5M) caused similar effects as DA. The dopamine antagonist fluphenazine (10-5M) in contrast was associated with a decreased latency and an increase in amplitude of single responses; with paired volleys, there was increased suppression of test responses, especially with LOT stimulation.

The uptake of [3H]-dopamine in the isolated turtle olfactory bulb has been studied with autoradiography. Under light microscopy the greatest amount of labeling was seen in the glomerular layer, within the glomerular neuropil and also in supporting bodies surrounding the glomeruli. Heavy labeling was also seen over terminals in the granule layer and the periventricular regions. These results are consistent with those previously obtained in the rat. The labelled structures showing affinity for catecholamines may mediate the inhibitory responses as revealed in the physiological studies.
DETECTION OF PETROLEUM HYDROCARBONS BY CRABS.

The abilities of the Dungeness crab, Cancer magister, and the blue crab, Callinectes sapidus, to detect petroleum hydrocarbons were assessed using behavioral techniques. When presented with a water-soluble fraction of Prudhoe Bay crude oil, both crabs abruptly changed antennular orientation and increased antennular flicking rate. These changes in antennular behavior were the same as those observed when crabs were presented with food extracts and were used to determine the percentages of crabs detecting various concentrations of petroleum hydrocarbons. The threshold concentrations at which 50% of the crabs detected the water-soluble fraction were 4 x 10^(-7) mg/ml for the Dungeness crab and 2 x 10^(-6) mg/ml for the blue crab. Both crabs apparently detect petroleum hydrocarbons at concentrations below those found in oil spills. Detection of petroleum hydrocarbons by the two crabs indicates that chemoreception by first-instar crustaceans is not restricted to pheromones and chemical food cues, and supports Ache's (1975) suggestion that the chemical spectrum sensed by decapod crustaceans is quite broad.

CHANGES IN VOLATILES OF BOVINE VAGINAL FLUIDS IN RELATION TO ESTRUS. George Prillet1,2, Charles A. Kidd3, Henry J. Lawley1 and James G. Kostelc2.
1Monell Chemical Senses Center, 550 Market Street, Philadelphia, PA, 19104; 2Department of Obstetrics and Gynecology, University of Pennsylvania; 3Reproduction Laboratory, Animal Physiology and Genetics, USDA Beltsville, MD 20705.

It has long been felt that bulls use olfactory cues to determine the time of estrus/ovulation in cows. Recent studies by the United States Department of Agriculture, Beltsville, MD employing trace dog show that those animals can differentiate odors from the vaginal secretions of estrus and non-estrus cows. Hence, a qualitative and/quantitative analysis of the volatiles from this source is characteristic of estrus. This change in odor can be identified by a "biological detector" (i.e., the dog) and should be amenable to characterization by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). We have been employing these instrumental techniques to determine which organic compounds in the vaginal secretions and mix of cycling cows appear and/or change in concentration during estrus.

Investigation of bovine vaginal fluids shows that the gas chromatograms obtained from estrus and non-estrus samples are not very different. These samples were collected on specially prepared tampons with subsequent extraction of the organic materials using a continuous overnight extraction. The extract was then concentrated and directly injected. Only qualitative changes in the constituents were constantly seen in these samples. These results suggest that intravaginal produced compounds are diluted during estrus possibly due to increased amounts of cervical mucus.

Volatiles collected from the headspace above estrus samples were both qualitatively and quantitatively different from non-estrus samples. The differences seen are in the type and amount of C-6-C-10 alcohols (saturated and unsaturated) and may provide the basis for distinguishing between estrus and non-estrus via olfaction and via instrumental means. The headspace from estrus and non-estrus milk and vaginal samples were also assayed for volatile sulfur compounds with preliminary results indicating a difference between the milk samples.

CONDITIONED AVERSION TO A TASTE PERCEIVED WHILE GROWING.
Russell F. Reilingier, Jr. and Gary K. Beauchamp, Monell Chemical Senses Center, Philadelphia, PA 19104. First author is a Biologist for the U.S. Fish and Wildlife Service.

Grooming behavior is used in rodent control. Tracking powders or dusts containing a toxin are sprayed into infested areas (e.g., within walls of a building). The material subsequently adheres to the feet and fur of rodents, and is ingested when the rodents groom. Reports in literature on rodent control suggest that grooming is a robust behavior that persists in the presence of a noxious taste, grooming/taste aversion interrelations have not been systematically studied. Here we report the results of five studies on this interrelationship. We believe the findings will contribute to Improved rodent control and will add to our current understanding of taste aversions and grooming behavior. In Experiment I, saccharin was mixed with a "neutral-tasting" jelly and applied to the fur of male Sprague-Dawley rats. Rats injected with LiCl after the applications strongly avoided saccharin solutions in subsequent 1-hr, 2-choice saccharin solution versus water) drinking tests, whereas rats injected with NaCl or given plain jelly on the fur showed only an initial neophobiaic response to the saccharin solution. The results indicated that the taste of saccharin was perceived while grooming and that the taste aversion formed in the grooming context had generalized to drinking. In Experiments 2-5, we obtained evidence that (a) the rats discriminated between one intensity of saccharin applied to the fur and another used in the test solution; (b) preexposure to saccharin applied to the fur reduced the strength of avoidance; (c) rats differentiated between qualities of two tastants applied to the fur in that one stimulus overshadowed the other; and (d) taste qualities were more important than toxic properties when two stimuli (saccharin, LiCl) were applied to the fur (saccharin overshadowed NaCl in subsequent drinking tests). Overall, our results support the notion that a taste alone paired with post-ingestional illness is sufficient to condition an aversion and can be used to argue against the notion that taste aversion requires object learning (e.g., gill-and-taste associations before actually encountering it); or, in delivering an unattractive, low-quality toxin and inducing crop aversion (when rodents are an agricultural pest).

DISTRIBUTION OF ZINC IN THE TASTE BUD REGION OF TWO VERTEBRATE SPECIES AS SHOWN BY X-RAY MICROANALYSIS-SIMS. Klaus Reutter, Department of Anatomy, University of Tuebingen, Osterbergsstr. 3, 74 Tuebingen, FRG.

In man, the trace metal zinc seems to be necessary for normal functioning of the taste system and taste acuity (1,2). Zinc deficiency diet decreases human taste acuity and in the rat leads to degenerative processes in tongue epithelium involving taste buds (TB). (3). Although zinc deficiency in humans is known to cause hypogeusia and ageusia, it is still not clear where zinc is actually required, i.e., within the TB region, or the taste signal conducting nerves of the peripheral nervous system, or the corresponding tract or nuclei of the CNS, or a combination thereof. The required zinc seems to be integrated into a protein (1-3).

The present investigation is restricted to the most peripheral part of the gustatory system, the TB. We compared data of two structurally different, but well known organs, the TB of the bullhead (Amleirusus) teleostean fish and the TB of a mammal, the rabbit. Preparations destined for x-ray microanalysis were processed as follows. After anesthesia, the barbels (fish) and foliate papillae (rabbit) were rapidly removed and frozen in undercooled liquid nitrogen. Thereafter the specimens were broken into small pieces under liquid nitrogen, and the pieces were transferred into a deep temperature freeze-dryer. After drying, the specimens were mounted and coated with carbon and analyzed in a scanning electron microscope, equipped with an x-ray microanalyzer. In some cases, the surfaces of the fractures in thin sections of TB. Thus x-ray microanalysis can be performed in distinct TB regions. Currently, zinc appears to vary considerably in different regions and areas within and both a bullhead TB and a rabbit TB. But as a rule, the zinc signal in a "TB region" exceeds that of neighboring tissues. Therefore zinc appears to be essential to intact peripheral gustatory processes. References: 1) Hendak, R.B., Bradley, D.J.: Life Sci. 9, 761 (1970). 2) Catalano, F.A.: Amer. J. Clin. Nutr. 31, 1098 (1978). 3) Catalano, F.A.; Nanda, H.: J. Oral Pathol. 6, 211 (1977). 4) Supported by the Deutsche Forschungsgemeinschaft (Re 225/8)

A small spine located on the inner lobe of each half gill of Limulus polyphemus has been examined by light microscopy, transmission electron microscopy, and scanning electron microscopy. The spines are structurally almost identical to the gnathobase spines located around the mouth in Limulus (Hayes 1966, 1971). The gnathobase spines have been shown behaviorally and electrophysiologically to be chemoreceptors by Barber (1956). Clam extract and glycine elicit definite responses when applied to these spines.

Characteristic structures found in the gnathobase spines include: cuticular tubes containing dendrites; ciliary segments of the dendrites with a 9+0 microtubular arrangement; supporting cells identified as cuticulo-bursal cells and microvillar cells (Hayes, 1971). All of these structures have been located in the gill spines and their appearance is identical to those of the gnathobase spines. In addition, scanning electron micrographs of the gill spines show small papillae on the surface with a clearly visible pore. The cuticular tubes terminate in these papillae and it is through them that the dendrites are exposed to the external environment. To this point behavioral and electrophysiological experiments have provided only equivocal results with these chemoreceptor sensoria. Clam extract glycine, seawater of various strengths, "male" and "female" seawater, sodium of saturated with CO2, seawater saturated with O2, seawater with reduced O2 all have been tested with no conclusive results. Currently a y-shaped maze is being employed to determine if chemotactic responses are present.

DISCRIMINATION BETWEEN MTRIAL AND TUPFED CELL EXTRA-CELLULAR SPIKES IN THE RAT Olfactory BULB BY ANTIDROMIC ACTIVATION. Stephen P. Schneider and John W. Scott. Department of Anatomy, Emory University, Atlanta, GA.

Despite anatomical evidence for a laminar distribution of olfactory bulb (OB) output neurons, electrophysiological identification of mitral (M) and tufted (T) cells has been made difficult by the concern that extracellular spikes recorded in the external plexiform layer (EPL) may result from propagated action potentials in M cell dendrites. Accurate identification of output neuron classes under these circumstances requires comparative studies of M and T cell physiology. We have used antidromal observations of T cell projections as another basis for discriminating between M and T cell spikes. OB units were recorded in two independent groups of rats in which anesthetics and electrode configurations were varied. Irrespective of experimental conditions, output neurons with different axonal projection patterns formed different but overlapping laminar distributions in the OB. Units high antidromically driven only from the posterior piriform cortex (pPC) and those (pPC-OT) which were activated from both the pPC and olfactory tubercle (OT) were distributed in or near the mitral cell body layer (MIL). Units (OT-only) activated from the OT but not from the pPC occupied a more superficial region of the olfactory peduncle averaging 129µm from the MBL. A fourth class of OB units (LOT-only) were antidromically activated only from the lateral olfactory tract (LOT) and averaged 240µm from the MBL. The LOT-OT-x (either of LOT only) displayed activation from the LOT + OT and were statistically different (p<0.01). Analysis of antidromic response latencies to LOT stimuli revealed small but significant differences between pPC-OT and OT-only groups as compared to the LOT-only units (p<0.01). Our results are consistent with anatomical observations of M and T cell projections based on HRP studies and suggest that under these recording conditions the preponderance of antidromic spikes in the EPL are recorded from T cells. We conclude that the laminar and sublaminal projection patterns defined by antidromic activation are sufficient information to distinguish classes of OB output neurons.

Supported by Public Health Service grant NS12400.

Walters and Struble (Soc. Neurosci. Abstr., 1978) reported that rats receiving prenatal X-irradiation of the olfactory bulbs show, as adults, a variety of alterations of olfactory bulb morphology. These include an 80% reduction in the volume of the main olfactory bulb, atrophy in the size of all bulb layers, abnormalities of mitral cell shape and dendritic field, and a marked reduction in number of granule cells. Preliminary behavioral tests by Walters and Struble suggested that these animals were not anemic but would respond to buried food, the odor of a cat, and showed no deficits in the acquisition of an olfactory mediated T-maze task.

We here report the results of olfactory function tests on two experimental rats provided for us by Walters and Struble. The animals were trained in our wind-tunnel olfactometer to detect a .5% (of vapor saturation) amyl acetate odor and then tested for absolute threshold. In addition, an olfactory intensity difference threshold was determined in one animal and the other rat was tested for acquisition of a 2-odor problem (ethyl acetate vs isopropyl acetate). Because these animals remained in a fragile state of health, small erratic behavior and instances of response extinction, careful feeding was necessary and a strict training schedule could not be followed. Despite these problems, performance accuracy for the acquisition of the detection problem, psychophysical measures, and 2-odor discrimination was well within the range observed for normal rats. The olfactory bulbs of these animals were greatly reduced in size as compared with normal controls and preliminary histological analyses revealed changes in the granular cell layer including a marked reduction in dense staining cells and absence of the normal cellular organization within this layer.

Early X-radiation produces interesting changes in the anatomy of the olfactory bulb. Unfortunately, neither this study nor the earlier report of Walters and Struble have revealed the functional consequences of these alterations in olfactory bulb morphology. However, it is clear that such animals can be trained on olfactory tasks and future studies, using more sophisticated tests, may reveal specific deficits related to the effects of this treatment.

Odor-Elicited Responses from the Rat Trigeminal Nerve. Wayne L. Silver and David G. Moulton. VA Medical Center; Clinical Smell and Taste Research Center and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104.

There are several different receptor types in the nasal cavity which are capable of responding to airborne chemicals. These include both olfactory receptors and trigeminal from nerve endings (Tucker, 1963). However, relatively little is known about the nature of the odor-elicited trigeminal response. Since stimulation of trigeminal receptors in the nose produces marked respiratory and cardiovascular changes, information about their sensitivity and discriminatory ability will help to determine the possible effects of odors on physiologic function as well as the role of the trigeminal system in the perception of odors. The purpose of the present study is to examine some of these properties of trigeminal chemosensitivity.

Integrated responses were recorded from the ethmoid branch of the trigeminal nerve in Sprague-Dawley rats. Stimuli were presented at the external nares via an air-dilution olfactometer or a syringe filled with odor impregnated cotton - a different syringe for each odor. The odor was drawn through the nasal passage by means of a nasopharyngeal cannula inserted into the trachea and connected to a vacuum line. Flow rate through the nose was kept constant at approximately 1000 ml/min. The vacuum was on for a period of about 30 seconds, in the middle of which an odor was presented for 10 seconds. The interstimulus interval was 3 minutes.

The integrated response exhibited an initial phasic component followed by a decline to a steady state tonic level. This response rapidly returned to base line levels after removal of the stimulus. Responses to several stimuli delivered with the syringe (amyl acetate, ethyl acetate, benzaldehyde, cyclopentanone, cyclohexanone, butanol, and ethyl acetate) were obtained in all animals tested. A response to phenyl ethyl alcohol was seen in only one of four animals. Responses to air alone were never observed except when using the olfactometer thresholds were determined for amyl acetate and butanol. Amyl acetate below 130 ppm (10^-6) vapor saturation and butanol below 164 ppm (10^-1.5) vapor saturation did not elicit a response. (Supported by NIH grant No. 1 PO1 NS 16365 01.)

Absolute olfactory thresholds were determined for 4 adult male rats, 2 female and 2 male undergraduate students. Odors were generated by an air-dilution olfactometer. Rats were water deprived and trained in a wind-tunnel to respond to the presence of amyl acetate odor for a water reward. For human subjects, odors were presented via a nose cone and correct responses were signaled by illumination of a light. For both species a descending method of limits was used in which 50 trials (humans) to 100 trials (rats) were given in a single session at each odor concentration. If performance accuracy was 75% or greater in the last part of the session, stimulus concentration was reduced by .5 log units in the next session. For rats, training was terminated if performance accuracy was below 75% in 4 consecutive sessions of a given problem. Humans who failed to detect a given concentration were given additional training on a detectable concentration and retested on the next lower concentration.

Mean absolute threshold for rats was 10^-7.2 (range: 10^-8 - 10^-6) of vapor saturation. Each rat maintained high levels of performance (93% - 100%) for all odor concentrations given. The absolute threshold for human subjects was 10^-7.0 (range: 10^-9 - 10^-7) of vapor saturation. Human subjects showed considerable variability in test-retest sessions and thresholds are based on best performance. Humans correctly judged when the odor was not detectable and asking them to continue trying, to guess, or to adopt different sampling strategies, etc. had little or no effect on performance accuracy.

Our data suggest that, at least for amyl acetate, the absolute threshold of the macromastigous rat is approximately 1000 times lower than the microsmatic human. Absolute threshold values obtained for rats were approximately 1.5 log units lower than those reported by Pearson (J. Comp. Physiol. Psychol.. 1976) for the rat and are similar to thresholds reported by Moulton and Marshall (J. Comp. Physiol. Psychol.. 1976) for dogs tested on alpha benzene.

A technique for the electrophysiological analysis of taste in the awake behaving rabbit will be described. Tastants were injected introrally, have revealed a variety of neural responses from both auditory and gustatory stimuli that signal the delivery of the tastants. Some cells show selective patterns of response to tastants. Other cells display various conditional modes of reaction that antedate response to the tastants, while still others show relatively nonspecific modes of reaction to auditory and taste stimuli. Analysis also reveals different types of taste relationships to cellular patterns of activity linked to orolinguinal movement. Output mechanisms in the parabrachial region appear to be dynamically modulated by the palatability of "expected" tastants.
AN OPERANT PROCEDURE FOR ASSESSING TASTE FUNCTION IN RATS.
Burton H. Slotnick. The American University, Washington, D.C.

A simple system for precise metering of tastants and a rapid method of training rats to use tastants as discriminative cues is described. A discrete trials go, no-go discriminative training procedure was used in which licking at a triple-barrel tube served as the operant response. An attending response, defined as making 8 licks at the tube, resulted in presentation of a .005cc of the positive or negative tastant. On positive trials a .02 cc water reinforcer was contingent upon completing a DRH requirement (making 8 licks within 1.5 sec after delivery of S). Completion of the DRH after presentation of S resulted in a signaled time-out which terminated when the rat stopped responding for 3-sec.

Using 12 NaCl as S and water as S' rates performed at high levels of accuracy (licking at high rates after delivery of S and passing after delivery of S') in 3-4 200-trial sessions (approximately 1-2 hrs of training). Absolute threshold for NaCl was determined for 3 rats using a modified descending method of limits procedure. Mean absolute threshold was .0032% (range: .0031-.00432). Acquisition of 2 tastant discriminations (including isohedonic solutions) occurred in 1-2 training sessions.

The methods described are simple, effective in gaining stimulus control of responding and avoid the various shortcomings of using preference methods for assessing detectability and discriminability of tastants.

EFFECTS OF UNILATERAL BULLECTOMY IN RATS ON Olfactory Thresholds.
Burton H. Slotnick and Frances X. Schoonover. The American University, Washington, D.C. 20016

To determine the effects of unilateral olfactory bulb removal on odor sensitivity, adult male rats were trained in a wind-tunnel olfactometer on a yes/no odor detection problem. Rates were operated on (unilateral bulb removal, n=5; sham, n=5) and tested postoperatively on a series of intensity difference problems and for absolute threshold. A modified Houtton-type air dilution system was used for generating stimuli. A discrete trials go, no-go training procedure was used in which responding in the presence of the positive stimulus (S) was reinforced with water. Amyl acetate odor was used in all psychophysical tests.

For the intensity difference threshold tests a modified ascending method of limits was used in which the standard stimulus (S) was .5% of vapor saturation and .05-.05% (in .05 steps) served as comparison stimuli (S') in separate test sessions. Absolute threshold tests the S stimulus was decreased (beginning with .5%) in half log unit steps in separate sessions; the S' stimulus was scrubbed air. For psychophysical tests, the next more difficult problem was given if the animal achieved a score of 75% correct in the last 60 trials of a 100-trial session. Training was discontinued if the animal scored lower than 75% on 4 test sessions of a given problem.

Results revealed surprisingly little difference between normal and unilaterally bulbectomized rats. Both groups showed near perfect retention of the preoperative detection task. The mean intensity difference thresholds for normals was .26% and for experimentals .3. The absolute threshold of experimental rats was only about .5 log units greater than normals. These results suggest that the major advantage of bilateral stimulation is not to greatly increase odor sensitivity. Bilateral stimulation may be more important for other olfactory functions such as adaptation and localization of odor sources.

THE EFFECTS OF VARYING BOTH US INTENSITY AND CS PREEXPOSURE LEVELS IN TASTE AVERSION CONDITIONING. Alan C. Spector, James C. Smith, and Glen R. Hollander. Florida State University, Department of Psychology, Tallahassee, Florida 32306

The purpose of Experiment 1 was to examine radiation induced taste aversion to saccharin using parametrically varied radiation exposures. The extent of the learned taste aversion was quantified using several dependent measures. On conditioning day, six groups of albino rats received a 10 minute presentation of saccharin solution (0.1% w/v) followed by either a 0R, 25R, 50R, 100R, 200R, or 500R radiation exposure. An additional control group received water followed by a 500R radiation exposure. The results indicate that the severity and longevity of the aversion was directly related to the level of radiation exposure. The variation of scores within groups systematically decreased as the radiation exposures increased. Pairing water with a 500R exposure resulted in an enhanced neophobic response to saccharin which was quite profound with unusual longevity. The purpose of Experiment 2 was to examine the effects of limited saccharin familiarity on the conditioning of a saccharic aversion while parametrically varying radiation exposure. This experiment was similar to Experiment 1 except that all of the rats received two 10 minute presentations of saccharin on the two days prior to conditioning. The results show that the magnitude of the aversion was reduced compared to the groups in Experiment 1, but that the severity of the aversion was still directly related to the level of radiation exposure. It was found that the dependent measures used to quantify conditioning were differentially sensitive. Therefore, the subsequent conclusions were contingent upon which measure was accepted as an indicator of conditioning. There was no systematic reduction in the variance of scores within the groups related to the radiation exposure as was seen in Experiment 1. A discussion of the relative merits of the dependent measures used in Experiments 1 and 2 is included.

AGE DIFFERENCES IN THE CONTRIBUTION OF OLFACTION TO FLAVOR. David A. Stevens. Clark University and Food Science Lab., U.S. Army Natick Research and Development Laboratories, Natick, MA 01760

Young (18-25 yrs) and older (56-67) persons with natural dentition tasted purées of cantalope (CLP), peach (PCH), corn (CRH), green pepper (GP), spinach, and turnip (TRH), and rated them while holding a nose piece into the external nares. Either clean air or air odorized by purees was blown into the nares (1/1 min) while the food was tasted. Subjects rated each purée's flavor using ten scales and then identified the foods. GP was rated saltier when odor was present than when it was not. The presence of odor increased the bitterness of TRH for the young, but decreased it for the older subjects. CLP, PCH, and GP were rated as more bitter by young than by older subjects. CLP was rated fruitier and PCH less fruity with odor present than when not for the young; the opposite was found for the old. GP and TRH has a more vegetable-like flavor with odor present than when not. The young rated the purees as generally less flat with the foods' odors present than when they were not present. The presence of a purée's odor increased ratings of strength of odor for a greater extent for young than for older subjects. The extent a purée was liked differed between age groups only for PCH: the young rated it higher than did the older subjects. Neither presence of odor nor age of subject affected the ratings of sweetness, sourness, smoothness or strength of flavor.

The presence of puree odor did not affect the accuracy of identification, which was generally low. Only CLP was correctly identified by more than half of the subjects of both ages. CBM was similarly identified by the young but not the older people.

These results show that there are important age differences in the effects of olfaction on flavor. Further, food odors do not simply strengthen flavor qualities, but affect flavors in a complex way.

Young (18-25 yrs) and older (56-67) persons with natural dentition tasted purées of cantalope (CLP), peach (PCH), corn (CRH), green pepper (GP), spinach, and turnip (TRH), and rated them while holding a nose piece into the external nares. Either clean air or air odorized by purees was blown into the nares (1/1 min) while the food was tasted. Subjects rated each purée's flavor using ten scales and then identified the foods. GP was rated saltier when odor was present than when it was not. The presence of odor increased the bitterness of TRH for the young, but decreased it for the older subjects. CLP, PCH, and GP were rated as more bitter by young than by older subjects. CLP was rated fruitier and PCH less fruity with odor present than when not for the young; the opposite was found for the old. GP and TRH has a more vegetable-like flavor with odor present than when not. The young rated the purees as generally less flat with the foods' odors present than when they were not present. The presence of a purée's odor increased ratings of strength of odor for a greater extent for young than for older subjects. The extent a purée was liked differed between age groups only for PCH: the young rated it higher than did the older subjects. Neither presence of odor nor age of subject affected the ratings of sweetness, sourness, smoothness or strength of flavor.

The presence of puree odor did not affect the accuracy of identification, which was generally low. Only CLP was correctly identified by more than half of the subjects of both ages. CBM was similarly identified by the young but not the older people.

These results show that there are important age differences in the effects of olfaction on flavor. Further, food odors do not simply strengthen flavor qualities, but affect flavors in a complex way.
EVIDENCE FOR CHEMICAL COMMUNICATION IN SEA LAMPEYS. John Teeter, Neuroscience, University of Pennsylvania, Philadelphia, PA 19104

The responses of spanning-run landlocked sea lampreys (Petromyzon marinus) were observed in two-choice preference tanks. Both sexually mature males and females exhibited preferences (presumably olfactory) for water in which sexually mature females had been held. No preference was observed when females were tested with water in which other females had been held, while males avoided water from tanks containing other males. Males, indicating that the observed preferences for the opposite sex were specific responses to different substances released by males and females, not a generalized response to the scent of other lampreys. Neither sexually immature males nor females showed preferences for rinses of immature lampreys of the opposite sex, indicating that the release of the apparent attractants and/or the responsiveness of the receiving animals were correlated with sexual maturation. The apparent attractant released by males was present in urine. Urine from sexually mature males elicited a preference response in females at concentrations down to about 19 µL/L of water in the test tank, while skin mucus, mlit (6.4 to 53.2 µL/L), and urine from sexually immature males (12.8 to 51.2 µL/L) were ineffective. The attractant released by females appeared to be associated with ovarian fluid.

These results suggest that both male and female sea lampreys, after reaching a certain stage of sexual maturation, release substances which signal their sex and reproductive state. These signals could be involved in aggregation prior to or during upstream migration, dispersion of males over the available spawning habitat, pair-formation and maintenance, or release of spawning behavior.

In addition, male sea lampreys, captured at the beginning of a spawning migration prior to the appearance of secondary sex characters, showed preferences for water in which sex lamprey larvae had been held. This suggests that the ability that chemical signals, originating from the resident population of sea lamprey larvae in a river, may aid upstream migrants in selecting a suitable stream in which to spawn.

Supported by a cooperative agreement between the Great Lakes Fishery Commission, the U.S. Fish; & Wildlife Service and the Pennsylvania Museum of Chemical Research.

INTERNEURONS PROJECTING TO MOTORNEURONS INVOLVED IN INGESTION AND REJECTION. Joseph B. Troverson and Ralph W. Markey, Rockefeller University, 1250 York Avenue, New York, NY 10021

Midbrain decerebrate rats are capable of making ingestion or rejection responses to a gustatory stimulus similar to that of intact rats (Grill and Norgren, 1978). These responses occur when the stimulus is perceived as being innocuous, and the same stimulus, when perceived as being noxious, may be involved in ingestion and rejection. Small deposits of horseradish peroxidase (HRP) were iontophoretically delivered to the trigeminal (Vg), facial (VgVII) and hypoglossal (XII) motor nuclei and the tissue processed with tetramethylbenzidine. Unlike projections from trigeminal transmission, projections from gustatory regions of the nucleus of the solitary tract (NSt) or the parabrachial nucleus (PBN) appear to follow a similar pattern. Projections from the PBN into this region of the RF and the adjacent MXII resulted in the labeling of an occasional anterior NSt cell with many neurons found in the RF ventral to the NSt. At more rostral levels, the ipsilateral Kollik-Puse and supratrigeminal regions showed retrogradely labeled neurons following motor nucleus injections. These areas are adjacent to the regions of the midbrain, the deep layers of the superior colliculus and midbrain reticular formation also showed retrogradely labeled neurons. It seems likely that these areas are directly involved in gustatory responses, however, as ances of ascending gustatory axones have not been reported in the midbrain.

CHEMORECEPTION IN Paramaecium: RELATIONSHIP OF FOLATE TRANSPORT TO FOLATE ATTRACTION. Judith Van Houten, Mary DiNallo, Mark Kohfeldt, Anestasis Wolchik.
Departments of Zoology, University of Vermont, Burlington, VT 05405, University of Iowa, Iowa City, IA 52242

Paramaecia detect some soluble chemicals and respond to them by accumulating the chemical in the cell. These chemical cues that make contact with the cell at the ciliary or plasma membrane and subsequently the chemical cue is transduced into a chemotactic electrical potential changes control alterations in ciliary beating, that is, in turn, control population behavior. It is not clear whether cues generally must cross the membrane in order to directly cause membrane potential changes or whether they bind to membrane receptors and indirectly cause the changes in membrane potential through alterations of permeability to other ions.

Paramaecia are attracted to folate. The characteristic electrical response to folate detection is a hyperpolarization. Since folate is an anion and cells have transport systems for anion transport, folate could conceivably hyperpolarize the cell directly by crossing the membrane and entering the cell. Rather than indirectly by binding to a receptor. Uptake studies of mutants specifically defective in response to folate indicate that defects in chemoreception are accompanied by defects in uptake in the conditions exist under which normal cells show no measurable uptake but are normally attracted. Mutants resistant to folate analog(s) in the absence of folate receptor, but transport of folate across the membrane is not necessary for chemoreception and of the characteristic electrical response to folate.

This work was supported by PHS grants GM 26231 and GM 29045.

The functions of taste and smell in vertebrates are anatomically and appear to be anatomically separate. Smell functions to monitor environmental surroundings and is innervated by the first cranial nerve. Taste, on the other hand, functions to elicit accept/reject substances which have been taken into the mouth, and receives innervation from the second cranial nerves including the III, IV, and IX. In vertebrates the distinction between taste and smell is not well defined, and there appear to be less clear at the functional level. I decided to test the hypothesis that in gastropods smell and taste could be separated at the functional level.

There was a significant increase in food consumption in females. I hypothesize from these data that there is no accounting for tasteless behavior in murid gastropods.
TASTE QUALITY RECOGNITION AND FORCED CHOICE PSYCHOPHYSICS.
James M. Weiffenbach National Institute of Dental Research National Institutes of Health, Bethesda, MD 20205

Taste quality recognition thresholds commonly reflect not only the subjects' taste function but also their response criterion, their willingness to report recognition of a taste quality. In many sensory studies response criterion bias can be controlled by forced choice procedures. In such procedures, subjects must choose which of two or more locations contains a target stimulus, and therefore, their willingness to report their perceptions is a factor. Because the target stimulus is not randomly assigned to the various locations, a subject's preference for guessing one location or another does not bias the result. Thus, the standard forced choice procedure both controls response criterion bias and allows asymptomatic effect of the subjects' guessing behavior. However, since stimulus too weak to be recognized by quality may nonetheless be discriminated from blanks, performance under forced choice procedures may not reflect taste quality recognition.

V. Collings has developed an innovative method for obtaining recognition thresholds which shares some features with the four alternative variant of the standard forced-choice procedure. In the Collings procedure, single stimuli are presented on each trial and a response chosen as to whether the stimulus was or was not tasted.

Response criterion bias is adequately controlled as long as responses indicating failure to recognize a taste quality are not accepted. Preferring guessing of taste quality names is unacceptable, but problems arising from this potential source of bias have not been reported. However, using the Collings procedure, I find 1) significant disproportional representation of quality names among incorrect responses, 2) significant individual differences in preferred guesses and 3) increases in disproportionate responding from initial to subsequent tests. These data force an examination of the data. Recall that the standard forced choice procedures do not eliminate preferable use of response categories but cancel the effects of guessing bias by randomly assigning the various locations combining data from presentations which may be positively and negatively affected. In the Collings procedure, stimulus cannot be presented under different conditions of response preference. The stimulus for which the most preferred response is correct is always more likely to be guessed correctly than the stimulus associated with the least preferred response.

CROMERCEPTION IN NASCENT OYSTER DRILLS: RESPONSE TO AGONISTIC STIMULI. Les Williams, Dan Rittschof, Betsy Brown, and Mel Carriker. University of Delaware, Lewes, DE 19958

Ostrealespinus cinereus is a marine shell-boring snail endemic to the Atlantic coast of the United States. Individual U. cinereus are stereotyped predators that detect and select their preferred prey by chemosensation. For instance, congeners of U. cinereus show a strong, innate, distance-chemotaxis to balanoid barnacles and byssorans, and a weaker response to gasterians and tube-dwelling barnacles (Williams et al., 1981). Throughout its range, U. cinereus is a generalist predator of numerous species of bivalves, gastropods, barnacles, and sponges. It is apparent that some species of prey are attacked by U. cinereus than can be explained by chemotaxis alone. We hypothesized that nascet U. cinereus are compelled by negative geotaxis and distance chemotaxis to emigrate from the near subtidal location of their eggs-capsules and move upward through the intertidal zone. During this migration, U. cinereus must move through bands of potential prey species that may emit chemical cues evoking contact rather than distance chemotaxis. To test this hypothesis, we compared the distance chemotaxis of snails to barnacle stimulus with that evoked by barnacle stimulus diluted with water from other potential prey species, the musel Mytilus edulis and the oyster Crassostrea virginica. Our results show that musel stimulus inhibits the distance chemotaxis of U. cinereus to barnacle stimulus. Oyster stimulus inhibits the chemotactic response of U. cinereus when mixed with dilute (1/10) barnacle stimulus, but inhibits the response when these are presented with higher concentrations (1/10) of barnacle stimulus. Further experiments show that a two hour exposure of U. cinereus to barnacle stimulus reduces the chemotactic response to barnacle stimulus. Two hour exposure to oyster or mussel stimulus significantly (p < 0.05) reduces the chemotactic response to barnacle stimulus. These results suggest that at least two prey species, C. virginica and M. edulis, of U. cinereus release chemotactic stimulus. Agonistic stimuli mediated by antifouling species may compete with the distance chemotacticant released by the barnacle B. eburneus.
Male mice emit 70kHz courtship vocalizations during encounters with female, but not male, mice and, if socially experienced, during exposure to female, but not male, urine. We investigated chemosensory control over the emission of ultrasounds in a series of studies.

Male mice underwent bilateral (BOBX) or unilateral (UOBX) olfactory bulb removal or a sham surgery. After recovery, each mouse was tested for its responsiveness to male and female mice and soil-dusted cage shavings from group housed females. Sham and UOBX mice emitted more vocalizations to females than to males, while BOX mice emitted fewer vocalizations overall and failed to discriminate males from females. While female-soiled bedding elicited responses from both sham and UOBX mice, BOX mice were silent.

In a second study, male mice received either ZnSO4 or saline intranasally prior to repeated vocalization tests with male and female stimuli. After an initial low response to both males and females, ZnSO4-treated mice increased their responsiveness to females and maintained a male-female discrimination equivalent to saline-treated mice. A repeated independent test of olfaction revealed a persistent deficit in olfactorily mediated abilities.

In a third experiment, males who had social interactions with females underwent either sham surgery or had their vomeronasal organs removed (VNX). Each male was later tested with males, females, or their urines. Sham males discriminated between males and females and between their urines. However, VNX mice, although maintaining a slight male-female discrimination, increased their responsiveness to males and dramatically decreased their responsiveness to female urine. Non-vomeronasal cues, some learned during social experience, may have maintained the behavior. To test this hypothesis, a fourth study was conducted, in which socially inexperienced mice were tested.

Males, lacking adult experience with females, were subjected to either sham or VNX surgery and later tested for their responsiveness to anesthetized males and females and their urines, both before and after social experience. Sham mice responded to females, but not to males, during all tests and, after social experience, to female, but not to male, urine. VNX mice did not discriminate between males and females, produced background levels of responses to other animals and failed to respond to either male or female urine at any time.

Supported by NIH 3 P32 NS06421 (CJM) and NSF RIS 77-15265 (CJM & R)